(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Диаметр всасывающей трубы для насосной станции


САН САМЫЧ

Здравствуйте, уважаемые читатели «Сан Самыча». В комментариях было много вопросов о том, возможно ли поставить поверхностный насос или насосную станцию на таком-то расстоянии от источника воды. Потому как, если рассуждать теоретически, то насос, который может поднять воду с глубины в 8 метров, т.е. создающий разрежение в 0,8 атм., сможет подтянуть воду по горизонтальной трубе диаметром 32 мм и длиной аж 800 метров. Делая скидку (опять же чисто теоретически) на отличие теории от практики в два-три раза, получается, что насос просто обязан легко подтягивать воду по трубе длиной 250-300 метров. Не сможет и не подтянет. Давайте разбираться почему?

Где теряется сила насоса

Для начала давайте определим, что может мешать насосу или воде, движущейся по трубе к насосу. Ведь, когда дело касается напорной линии, все более или менее сходится с теорией гидравлического расчета, расхождения получаются небольшими. А всасывающая линия получается «заколдованной» и никак не хочет подчиняться результатам расчетов, только на небольших расстояниях. В чем может быть причина? Скорость потока воды, которая может создать дополнительное сопротивление во всасывающей линии, как правило, меньше, за счет большего диаметра трубы. Кардинальное же, принципиальное отличие всасывающей линии от напорной – заключается в том, что в первой создается разрежение или, по-другому, частичный вакуум, а во второй – избыточное давление. Для самой воды это большого значения не имеет, вода, как все знают, вещество не сжимаемое и не растягиваемое. А вот для воздуха… «Ну, во-от, опять воздух виноват», — скажут многие, — «И откуда же ему там взяться?» Да, опять воздух!.. Но он не тормозит воду, хотя и не без этого в некоторых случаях, о которых поговорим чуть позже. Нет, воздух просто «забирает силу» насоса, сажая разрежение, становясь от этого больше. Т.е. маленький пузырек воздуха, благодаря создаваемому насосом разрежению во всасывающей линии, становится больше в объеме. Подъемная же сила насоса уменьшается на величину выполненной насосом работы для увеличения объема этого пузырька. А если труба длинная? А если пузырьков много? И это не считая увеличения площади соприкосновения с водой, уменьшения площади сечения трубы и, соответственно, увеличения скорости потока в некоторых местах.

Откуда же берется воздух и почему его сложно удалить из трубы?

Поговорим о трубах

Давайте вспомним, какие трубы, обычно, используются для всасывающего трубопровода. Уточню, для длинного всасывающего трубопровода. Потому что если для короткого можно взять трубу ПНД 25-32 мм или специальный гофрированный шланг, то для длинного трубопровода это делать не желательно. Труба ПНД просто может сплющиться под действием внешнего атмосферного давления, а гофрированный шланг – элементарно дорог и неудобен. Соответственно, нам на выбор остаются металлические трубы, полипропиленовые и металлопластиковые. Есть еще ПВХ трубы, но они не рекомендуются для питьевой воды из-за содержания в них соединений хлора, да и не отличаются они почти от полипропиленовых.

Металлические – имеют большую шероховатость внутренних стенок и, как следствие, высокое гидравлическое сопротивление (в 4 раза выше пластиковых). Т.е. из них длинного трубопровода тоже особо не сделаешь, ведь мы говорим о сотнях метров, а не о десятках. И даже при десятках метров, трубы нужно соединять – сваркой или резьбой, их нужно перетаскивать и монтировать. И если шестиметровый отрезок трубы согнется на несколько сантиметров, вы заметите это?

Металлопластиковые трубы, впрочем, как и полиэтиленовые (ПНД, на всякий случай будем держать их в уме), поставляются, транспортируются и продаются свернутыми в кольцевые бухты диаметром метр-полтора. Получается, что перед монтажом их нужно выравнивать. Причем выравнивать тщательно, чтобы избежать образования перепадов по высоте, так называемых «домиков». Но как бы вы ни старались, какие-то перепады все равно останутся, пусть даже минимальные в несколько миллиметров. Запомним этот момент. Полипропиленовые — продаются «хлыстами» — отрезками длиной 2, 4, 6 метров. При монтаже их придется соединять муфтами. И при этом соединении велика вероятность нарушения соосности хлыстов. Кроме того, и сами полипропиленовые трубы достаточно гибкие. Так что и здесь нужно внимательно следить за геометрией труб при монтаже. Сделаем важный вывод из этой части разговора. При всем нашем желании и старании соблюсти идеальную, как на чертеже, геометрию всасывающего трубопровода невозможно, или это будет очень затратно по средствам и времени.

Погрешности приборов и человеческий фактор

Мало того, что сами трубы или их монтаж не позволяют достичь идеальной прямой для всасывающей линии, так это не позволят сделать имеющиеся приборы контроля. Горизонтальность монтажа, как правило, контролируется «уровнем» (ватерпасом). Не важно, на каком принципе работает ваш прибор: лазер это, гидроуровень, плавающий воздушный пузырек на линейке или обыкновенный отвес. Все они имеют свои погрешности и недостатки в применении. Погрешность же всего в полпроцента (это неплохая точность для бытовых приборов) это отклонение в полсантиметра на метр длины. Прикиньте, какая в результате может выйти ошибка, скажем при хотя бы 50 метрах, — это 25 сантиметров по высоте в лучшем случае.

Да что греха таить, Вы умеете правильно использовать «уровень»? Проверить его показания, увеличить точность, если понадобится. Вряд ли. Для этого нужно иметь большой опыт пользования этими приборами и последствий этого пользования. А без этого, увы, можно смело умножать и без того немалую погрешность этих приборов минимум на два.

Причем тут точность геометрии труб и приборов?

Да, вполне резонный вопрос: для чего ранее шел разговор о точности и погрешностях? Так все просто: чем длиннее мы задумываем всасывающий трубопровод, тем более идеальным его придется делать. И это происходит по нескольким причинам:

1. Чем больше объем воды должен быть во всасывающем трубопроводе, тем больше вероятности появления (образования, оставления) пузырьков остаточного воздуха, и тем больше усилий нужно прилагать насосу. А они, как мы помним, весьма ограничены, и практически не зависят от мощности насоса, потому что здесь «балом правит» атмосферное давление.

2. Чем длиннее всасывающий трубопровод, тем больше вероятности образования перепадов по высоте («домиков»), в том числе и очень протяженных, от чего их нехорошее влияние нисколько не уменьшается, а только увеличивается. 3. Чем длиннее всасывающий трубопровод, тем больше соединений труб мы вынуждены будем сделать в случае монтажа из «хлыстов», тем больше вероятность геометрических дефектов при соединении. А это потенциальные «карманы» для трудноудаляемого или не удаляемого воздуха. Как видите, причины для беспокойства есть. Давайте же оценим, насколько идеальным должен быть трубопровод, если его ставить на всасывающую линию и, как можно уменьшить вероятность этих ошибок.

Допустимые погрешности всасывающего трубопровода

Не знаю, как другие, я разделяю все воздушные пузыри в трубах на три категории: 1. Легко удаляемые 2. Трудно удаляемые и 3. Не удаляемые. Но смею напомнить, я не теоретик – я практик, поэтому это классификация сугубо личная и вряд ли еще где-то встречается.

Легко удаляемые пузыри воздуха, как следует из названия, легко удаляются проходящим протоком воды, следует лишь увеличить скорость этого потока или несколько раз изменить её. Они образуются в местах шероховатостей или неровностей внутренней поверхности труб, а также в местах соединений.

Трудно удаляемые пузыри образуются в местах перепадов высот трубопровода в случаях, когда перепад по высоте не превышает одного внутреннего диаметра трубопровода. Они могут быть удалены со временем, в результате постоянного воздействия потока переменной скорости. Обычно это происходит при включениях насоса, когда скорость воды очень быстро увеличивается. После нескольких десятков или даже сотен включений насоса такой пузырь уничтожается. И последние, не удаляемые пузыри, образуются в местах перепадов высот трубопровода более одного внутреннего диаметра. В результате воздушный пузырь запирается окружающей его водой, и удалить его полностью без внешнего воздействия не представляется возможным. А теперь обратите внимание на размерность величины определяющей неудаляемость воздушного пузыря, это внутренний диаметр трубопровода вне зависимости от его длины. Т.е. короткий всасывающий трубопровод – погрешность один внутренний диаметр, длинный всасывающий трубопровод – погрешность та же. Замечаете разницу: соблюсти абсолютное отклонение, допустим, в 3 см на 10 метров, или те же 3 см на 100 метров. Как говорится, почувствуйте теорию относительности в действии.

Как уменьшить влияние погрешностей при монтаже всасывающей линии

Уж простите мне мое философствование, всегда считал и считаю, что человек должен иметь право на ошибку. А уж как добиться этого права – это другой вопрос. В нашем случае этого можно добиться несколькими способами, основные из которых это:

1. Увеличение внутреннего диаметра всасывающего трубопровода. Соответственно, увеличится и наружный. Т.е. мы увеличиваем абсолютную допустимую погрешность всасывающей линии.

2. Монтаж всасывающего трубопровода с уклоном. И если по первому пункту, по-моему, дополнительных пояснений делать не нужно, то по второму – следует сделать расшифровку.

Заметьте, я не стал уточнять в какую именно сторону нужно делать уклон, к источнику воды или от него. А все потому, что уклон трубопровода – это универсальное «средство борьбы» с перепадами по высоте, типа «домиков». Удалить же воздух из заранее известных мест трубопровода – это чисто технический момент.

Действительно, при соблюдении уклона хотя бы в один внутренний диаметр трубы на расстояние всасывающей линии, мы увеличиваем допустимое отклонение по вертикали вдвое, т.е. вдвое уменьшаем шансы сделать «домик» с НЕ удаляемым воздушным пузырем. А если сделать уклон больше и относительным, например, один внутренний диаметр на один погонный метр, тогда наши ошибки на расстоянии в один метр, практически, нивелируются. Правда, тогда появляется еще и вертикальная составляющая потерь, но, в большинстве случаев, её можно просто учесть при расчетах.

Как сделать длинный всасывающий трубопровод

Итак, давайте подведем итоги нашего слегка затянувшегося разговора о длинных всасывающих трубопроводах. Исходя из всего вышеизложенного, можно вывести несколько условий, соблюдая которые вы сделаете длинный всасывающий трубопровод. А уж какой он будет длины и будет ли он работать зависит от вас и от тщательности выполнения этих условий. 1. Труба должна быть жесткая, чтобы выдержать внешнее воздействие атмосферного давления. Это может быть металл, металлопластик или полипропилен. Или другой материал, соответствующий данному условию. 2. Диаметр трубы должен быть, как можно больше, для уменьшения абсолютной погрешности при монтаже трубопровода. С другой стороны, увеличение объема воды в трубопроводе приведет к увеличению оставшегося там воздуха. Оптимальный диаметр длинного всасывающего трубопровода – 32, 40, максимум 50 мм. 3. Труба должна быть максимально прямой, выровненной, чтобы избежать образования локальных и протяженных перепадов по высоте, так называемых, «домиков». 4. Для уменьшения влияния погрешностей при монтаже трубопровода труба должна быть уложена с уклоном в какую-либо сторону (лучше к источнику воды). Чем больше уклон, тем меньше будут влиять ваши ошибки на конечный результат. При этом нельзя забывать о выполнении предыдущего пункта. 5. Должно быть как можно меньше соединений при монтаже всасывающего трубопровода. В идеале, их должно быть всего два: 1. Соединение с насосом; 2. Соединение с обратным клапаном. Все соединения должны быть герметичными не только по воде, но и по воздуху, чтобы избежать подсосов. 6. Недопустимо как-либо увеличивать гидравлическое сопротивление всасывающей линии. Это значит, что нельзя ставить перед насосом картриджные фильтры. Максимум, что можно себе позволить, это фильтры–сетки или грубые фильтры в 300-400 мкм, имеющие минимальное гидравлическое сопротивление. Собственно, это все. Конечно, можно добавить, что грубые фильтры нужно периодически чистить, что нужно предусмотреть некие мероприятия для борьбы с замерзанием воды в трубах и так далее. Но напрямую это к теме нашего разговора не относится. Поэтому, с Вашего позволения, уважаемые читатели «Сан Самыча», я поставлю точку в нашей, надеюсь плодотворной, беседе. Посему, до новых встреч. Пока.

sansamuch.ru

ТРЕБОВАНИЯ К ПРОЕКТИРОВАНИЮ ВСАСЫВАЮЩИХ И НАПОРНЫХ ТРУБОПРОВОДОВ

Надежность работы насосной станции и удобство ее обслуживания во многом зависят от выбранной схемы коммуникаций трубопроводов, их переключений и взаимного расположения.

Всасывающие трубопроводы служат для надежного, бесперебойного и с наименьшими потерями подвода воды к насосу, поэтому они являются одним из наиболее ответственных элементов насосной станции. Для обеспечения надежности подачи воды потребителям количество всасывающих линий к насосной станции независимо от числа и групп установленных насосов, включая пожарные, должно быть не менее двух. При выключении одной линии остальные должны быть рассчитаны на пропуск полного расчетного расхода для насосных станций I и II категорий и 70% расчетного расхода для III категории. Устройство одной всасывающей линии допускается для насосных станций III категории.

Всасывающие трубопроводы при небольшом числе насосов и значительной высоте всасывания, а также в большинстве станций 1-го подъема предусматриваются отдельно для каждого насоса. При большом числе насосов (в том числе и резервных) устраивают коллектор, объединяющий всасывающие патрубки насосов.

Основным требованием, предъявляемым к всасывающим трубопроводам, является их воздухонепроницаемость. При недостаточной герметичности всасывающего трубопровода нарушается нормальная работа насоса.

Для обеспечения минимальных потерь напора и уменьшения геометрической высоты всасывания всасывающие трубопроводы должны быть по возможности короткими с небольшим количеством фасонных частей: колен, отводов, тройников. В местах изменения диаметров трубопроводов следует применять эксцентрические переходы.

Всасывающий трубопровод, как правило, должен иметь непрерывный подъем к насосу не менее 0,005. Уклон выполняется для того, чтобы воздух, выделяющийся из воды, свободно двигался с водой к насосу. Для обеспечения устойчивой работы насосов во всасывающих трубах не должно образовываться воздушных мешков.

На всасывающих линиях каждого насоса запорная арматура устанавливается у насосов, расположенных «под заливом» или присоединенных к общему всасывающему коллектору. Данное решение обеспечивает возможность демонтажа насосов при любых условиях их работы. В насосных станциях III категории допускается установка на всасывающем трубопроводе приемных клапанов диаметром до 200 мм.

Чтобы во входное отверстие всасывающей трубы не попадал воздух при образовании вихревых воронок в приемной камере или колодце, входная часть приемной воронки должна быть заглублена ниже поверхности минимального уровня в камере (или колодце) не менее чем на 1,5 диаметра входного отверстия.

При определении диаметров всасывающих трубопроводов скорость движения воды в трубопроводах диаметром менее 250 мм принимается в пределах 1—2 м/с, при диаметре более 250 мм — 1,2—1,6 м/с.

Количество напорных линий от насосных станций I и II категорий должно быть не менее двух. Для насосных станций III категории допускается устройство одной напорной линии. Обычно прокладывают два напорных водовода, и только в редких случаях на крупных насосных станциях предусматривают три и более водоводов. Кроме того, на напорных трубопроводах устраивают коллекторы, позволяющие подавать воду в различные водоводы, а также устанавливают задвижки для регулирования подачи насосов, их отключения и переключения на подачу в другой водовод в случае повреждения основного, обратные и предохранительные клапаны, водомеры и манометры.

Обратный клапан устанавливается между насосом и запорной арматурой. При ремонте обратного клапана его можно отключить от напорного водовода с помощью задвижки. Обратные клапаны рекомендуется размещать на напорных водоводах за пределами насосной станции в специальных колодцах или камерах, что способствует более надежной эксплуатации насосной станции и позволяет уменьшить ее габариты.

Скорость движения воды в напорных трубопроводах внутри станции для труб диаметром менее 250 мм принимается в пределах 1,5—2 м/с, для труб диаметром более 250 мм — 2—2,5 м/с.

Размещение запорной арматуры на всасывающих и напорных трубопроводах должно обеспечивать возможность замены или ремонта любого насоса, обратных клапанов и основной запорной арматуры, а также проверки характеристики насосов без нарушения требований по обеспечению подачи воды.

Всасывающие и напорные коллекторы с запорной арматурой располагают в здании насосной станции, если это не вызывает увеличения пролета машинного зала.

Трубопроводы в насосных станциях, а также всасывающие линии за пределами машинного зала, как правило, выполняются из стальных труб на сварке с применением фланцев для присоединения к арматуре и насосам.

Трубы в помещении насосной станции прокладываются в каналах, в подвальных помещениях — под полом машинного зала и над полом насосной станции, в верхней части помещения — над агрегатами. Последний вариант прокладки используется в исключительных случаях. Всасывающие и напорные трубопроводы в помещениях насосных станций, как правило, прокладываются над поверхностью пола.

Прокладку над полом машинного зала применяют в незаглу- бленных насосных станциях обычно при трубах диаметром 300— 500 мм и более, а в заглубленных насосных станциях — при трубах любого диаметра. Расстояние от пола до низа трубы принимается равным 300 мм для труб диаметром до 400 мм и 500 мм — для труб диаметром 500 мм и более. При прокладке труб над полом необходимо устраивать переходные мостики, лестницы и настилы. В каналах прокладываются трубы диаметром менее 300 мм.

В насосных станциях, заглубленных на 5—6 м и более, можно прокладывать трубы в машинном зале на подвесках или кронштейнах. При этом высота подвески труб должна обеспечивать свободный проход под ними.

После монтажа трубопроводы испытывают гидравлическим давлением на плотность и прочность.

Все трубопроводы как в пределах насосной станции, так и за ее пределами (проложенные в грунте) защищают от наружной коррозии соответствующей изоляцией.

studref.com

САН САМЫЧ

  Здравствуйте уважаемые читатели «Сан Самыча«. Смешно иногда слушать продавцов-консультантов, когда они пытаются искренне помочь «правильно» подобрать насосную станцию. Глубина всасывания, напор, расход, мощность электродвигателя, рассчитывая характеристики на ходу, они умудряются все перепутать и запутаться самим. Для нас, уважаемый читатель, важно понять, что производитель указывает максимально возможные характеристики насоса. И они, конечно, связаны с параметрами Вашей системы водоснабжения, но они не совпадают, и не могут совпадать.

Да, насос способен поднять воду с глубины в восемь метров, но тогда смело скидывайте с напора те же восемь метров или 0,8 бар (атмосфер, кгс/см2).

Да, насос выдаст 45 метров напора (4,5 бар, атм., кгс/см2), но при условии, что Вы не будете с него требовать расхода вообще, а источник воды будет на уровне насоса.

Да, насос будет перекачивать 50 литров в минуту (3 куб. метра в час), но тогда грех добиваться от него хоть какого-то давления. Радуйтесь, что он выдает Вам эти пять ведер в минуту!

Впрочем, производитель и не скрывает этого. В любом паспорте насоса и насосной станции можно найти зависимости расхода от давления на напоре данного насоса, оформленные в виде графика или таблицы. А уже сам покупатель решает: устраивают его данные характеристики или нет.

Что нужно для расчета характеристик насоса?

Для расчета необходимых характеристик насоса нужны некоторые сведения о будущей системе водоснабжения. И мне кажется, Вы, как хозяин своего дома без труда озвучите или выясните их.

К этим сведениям относятся:

— расстояние по вертикали от зеркала воды источника водоснабжения до предполагаемого места установки самого дальнего смесителя в метрах. Причем желательно учесть сезонные колебания этого расстояния и, так называемые, динамические, когда зеркало воды опускается из-за того, что Вы берете воду. Чем точнее Вы определите это расстояние, тем точнее будет расчет, потому что вертикальная составляющая потери напора, обычно, самая большая.

— расстояние по горизонтали от источника воды до самого дальнего смесителя, рассчитанное исходя из предполагаемого маршрута прокладки трубы. Это расстояние можно измерить не так точно, точность плюс-минус один метр вполне сойдет.

— примерное предполагаемое место установки насоса или насосной станции в сборе. Соответственно, с вертикальным расстоянием, желательно, определиться поточнее.

— диаметры и материал предполагаемых к использованию в системе труб. Сейчас, обычно, используют пластиковые трубы, а у них у всех примерно равные показатели шероховатости, поэтому, по большому счету, значение имеют только диаметры предполагаемых труб и их длина. К слову, распространенная в интернете формула для расчета водоснабжения: 10 метров горизонтальной трубы равно 1 метру по вертикали, мягко сказать, не всегда верна. В дальнейшем я расскажу почему.

— Желательно, конечно, определиться с количеством уголков, тройников, кранов и других элементов системы, называемых «местными сопротивлениями». Но я понимаю, что это довольно сложно, по крайней мере, на данном этапе. Поэтому, по нашему обоюдному согласию, заменим это все, скажем, 10-процентным запасом по напору.

Ну, а при монтаже системы, не забывайте простое правило: Чем меньше соединений, тем меньше вероятность, что у Вас что-то потечет. К этому стоит добавить, что и потери напора тоже будут меньше.

Да!!!, и самое главное, Вы должны определиться, сколько потребителей (смесители, душ, бачок унитаза, стиральная или посудомоечная машина, уличный кран для полива и прочее) будут у Вас работать одновременно без существенной потери напора. Потому что от этого очень многое зависит.

Ниже, я собрал в таблицу потери напора в горизонтальной пластиковой трубе длиной 10 метров в зависимости от диаметра трубы и количества потребителей, рассчитанные с помощью специальной программы. По-моему, получилось очень показательно.

Потеря напора в метрах водного столба на горизонтальном участке пластиковой трубы длиной 10 метров в зависимости от внутреннего диаметра трубы и количества потребителей.

Внутренний диаметр трубопровода

12 мм

16 мм

20 мм

26 мм

1 потребитель (расход 0,2 л/с или 12 л/мин)

4,05

1,0

0,35

0,1

2 потребителя (расход 0,4 л/с или 24 л/мин)

14,09

3,49

1,16

0,33

3 потребителя (расход 0,6 л/с или 36 л/мин)

29,49

7,23

2,52

0,7

Из таблицы видно, что формуле: 10 метров горизонтальной трубы равно 1 метру вертикальной, соответствует только труба внутренним диаметром 16 мм (это металлопластик или полипропилен наружным диаметром 20 мм) в расчете на одного потребителя. И это правило никак нельзя назвать универсальным.

Стоит также добавить, что, даже заменяя участки существующей системы на трубы большего диаметра, Вы, тем самым, снижаете сопротивление трубопроводов системы в целом, увеличивая напор на выходе из смесителей.

 Пример расчета характеристик насосной станции.

«Все это хорошо, — скажете Вы, — Но как же считать?!» Давайте посчитаем вместе.

 Задача. Сделать гидравлический расчет водопроводной системы при условии что:

— Имеется скважина глубиной 18 метров, зеркало воды в которой находится на глубине не больше 10 метров от поверхности земли.

— Насос или насосную станцию предполагается поставить над скважиной в кессон глубиной 2,5 метра.

— От скважины до дома расстояние 13 метров.

— Внутри дома предполагаемое горизонтальное расстояние по маршруту прокладки трубы – 9 метров.

— Предполагаемые вертикальные расстояния: от пола до смесителя – 1,1 метра, от пола до излива  душа – 2.2 метра, от уровня земли до пола – 1,2 метра.

— Предполагаемая труба на всасе насоса: металлопластик наружным  диаметром 26 мм и длиной 10 метров. На напоре: от насоса до дома – полиэтилен наружным диаметром 25 мм, длиной 18 метров, разводка в доме – полипропилен наружным диаметром 20 мм, длиной 9 метров.

— Рассчитывать нужно на использование одновременно двух потребителей.

Для начала, давайте приведем в порядок все эти сведения. Общее вертикальное расстояние от зеркала воды до самого дальнего потребителя (излив душа) будет равняться:

10 м + 1,2 м + 2,2 м = 13,4 метра.

Расстояние по вертикали от насоса до зеркала воды:

10 м – 2,5 м = 7,5 метров.

Горизонтальные расстояния нам, собственно, нужны только для определения длины труб, а эти сведения у нас уже есть. Длина трубы на всасе, которую нужно учесть при расчете – это расстояние от зеркала воды до насоса, т.е. 7,5 метров. В принципе, насос должен осилить эти метры, но это число нужно запомнить и проверить перед поиском подходящего насоса.

Общая потеря напора по вертикали нами уже определена, это 13,4 метра. Теперь найдем потерю напора в трубах из-за движения по ним воды. Металлопластиковая труба наружным диаметром 26 мм имеет внутренний диаметр 20 мм, такой же внутренний диаметр у полиэтиленовой трубы, которую предполагается проложить от кессона к дому, поэтому:

18/10*1,16 = 2,088 м

Это потеря напора в полиэтиленовой (ПНД) трубе, ведущей к дому.

Особо не мудрствуя, я взял потерю напора для этого диаметра, 20 мм, и двух потребителей из своей же таблицы и нашел потерю напора для нужной нам длины трубопровода, помня о том, что в таблице указана потеря напора для длины в 10 метров.

Однако для оценки стабильности работы насоса нужно найти полное сопротивление трубы на всасе:

7,5/10*1,16 = 0,87 метра

и общая потеря напора на всасе будет равна:

0,87 + 7,5 = 8,37 метра,

что очень близко к критическим 9 метрам, максимально возможной глубине всасывания насоса. Поэтому, желательно, либо увеличить глубину кессона, хотя бы до 3 метров, либо использовать насосную станцию с внешним эжектором, что намного дороже. Еще вариант, увеличить диаметр всасывающего трубопровода до 32 мм, тогда общее сопротивление трубы уменьшится.

Давайте выберем вариант по надежней: увеличим диаметр трубы на всасе, поменяв её на металлопластик с наружным диаметром 32 мм (внутренний, соответственно, 26 мм) и «опустим» кессон на полметра. Общая высота подъема воды при этом нисколько не изменится. Мы лишь подвинем насос поближе к воде.

7/10*0,33 = 0,231 метра, и

7,0 + 0,231 = 7,231 метра,

Что уже вполне приемлемо, и с поиском нужного насоса, скорее всего, проблем не будет.

Полипропиленовая труба с наружным диаметром 20 мм имеет внутренний диаметр 16 мм, и потеря напора на ней составит:

9/10*3,49 = 3,141 метра

Теперь сложим все, что мы вычислили:

13,4 + 2,09 + 0,23 + 3,14 = 18,86 метра

И прибавим к этому оговоренные нами ранее десять процентов на потерю в местных сопротивлениях:

18,86 +10% = 20,75 метра.

Но это лишь тот напор, который должен преодолеть насос, чтобы вода просто полилась из смесителя. Чтобы вода пошла из смесителя под напором, к этому нужно добавить так называемый «свободный напор». По стандартам он должен быть не меньше 3 метров, исходя же из практических соображений, лучше закладывать в расчет число побольше, в разумных, конечно, пределах, например, 15 метров. Этого хватит на преодоление сопротивления в различном подключаемом нами оборудовании: бойлер, стиральная и посудомоечная машина и т.д.

Таким образом, мы получаем желательные характеристики насоса:

20,75 + 15 = 35,75, т.е. примерно 36 метров,

Но не меньше 20,75 + 3 = 23,75, т.е. примерно 24 метра.

При этих напорах насос должен выдавать нам 24 литра в минуту или 1,44 кубометра в час.

Напомню, это не те характеристики, которые написаны на шильдике насоса, а те, которые насос должен реально выдавать при этом напоре и расходе.

Как это узнать? Читаем дальше…

sansamuch.ru

Насос, насосная станция водоснабжения

Поверхностные насосы (станции водоснабжения) предназначены для перекачки чистой воды и неагрессивных жидкостей. Они устанавливаются вне перекачиваемой среды, способны забирать воду с глубины до 8, 9 метров (в зависимости от производителя). Насос Aquario подъем с 8 метров, но производитель не рекомендует использовать их ниже 7,5 метров.

Требования для перекачиваемой жидкости:

  • это чистая вода, не содержащая длинноволокнистые включения;
  • размер твердых веществ — не более 1 мм;
  • содержание твердых взвешенных частиц — не более 50 г/куб.м.

Варианты применения насосов и насосных станций

В простых системах, где требуется просто подача воды под давлением без автоматического управления работой насоса, достаточным будет использование насоса без дополнительных устройств:

Система водоснабжения из колодца, скважины

Для водоснабжения дома удобнее использовать автоматическую насосную станцию. В отличии от простого насоса, насосная станция автоматически включается и выключается в зависимости от пользования водой и постоянно поддерживает давление в системе водоснабжения.

Система водоснабжения из колодца, скважины

Система водоснабжения при наличии магистрального водопровода с недостаточным давлением

Для повышения давления в магистральном трубопроводе рекомендуется использовать автоматическую насосную станцию совместно с промежуточной накопительной ёмкостью. Вода из магистрального водопровода сначала наполняет промежуточную ёмкость, а потом оттуда забирается насосной станцией и под давлением поддается потребителю.

Система водоснабжения при наличии магистрального водопровода с недостаточным давлением

ВАЖНО!

НЕ рекомендуется подключать насос или насосную станцию напрямую к магистральному водопроводу (рисунок ниже). Поскольку в этом случае, невозможно гарантировать поступление воды в насос и возникает риск работы насоса без воды. Либо наоборот, возможна подача чрезмерного давления, которое может повредить насос. При выборе данной схемы необходимо обязательно доукомплектовать насос дополнительными средствами защиты от работы без воды и от чрезмерного входного давления.

Система водоснабжения с насосной станцией

Насосная станция — это автоматический агрегат, в состав которого кроме насоса входят: гидроаккумулятор, реле давления, контрольная и соединительная аппаратура. Функционально насосная станция отличается от насоса тем, что она постоянно поддерживает давление в системе водоснабжения и автоматически включается/выключается в зависимости от пользования водой.

Гидроаккумулятор насосной станции представляет собой металлический резервуар с установленной в нем мембраной из специальной резины и предварительно закачанным под определенным давлением, воздухом. Воздух закачивается через ниппель, расположенный под пластиковой крышкой в задней части гидроаккумулятора.

Гидроаккумулятор насосной станции и его составляющие

Реле давления — это электромеханическое устройство, реагирующее на давление воды в системе водоснабжения, и в зависимости от величины этого давления, замыкающее или размыкающее цепь электропитания насоса. Настройку реле давления можно менять.

Принцип действия насосной станции

При запуске насосной станции и пользовании водой насос включается автоматически и начинает качать воду потребителю.

Принцип действия насосной станции

После закрытия крана, насос качает воду в гидроаккумулятор, расширяя мембрану и повышая давление в систему.

Принцип действия насосной станции 2

После того, как давление достигнет определенного (настроенного заранее) значения (давление отключения), реле выключит насос.

Принцип действия насосной станции выключение реле

При начале водозабора, вода, находящаяся в мембране гидроаккумулятора под давлением, начинает подаваться потребителю. При этом давление в системе начинает уменьшаться, а насос остается выключенным.

Принцип действия насосной станции выключение реле 2

Как только давление в системе понизится до определенного (настроенного) значения (давления включения), реле включает насос, и цикл повторяется.

Принцип работы автономной системы водоснабжения

Принципиальной разницы между установкой насоса и насосной станции нет, поэтому мы покажем вам примеры установки на примере насоса.

Всасывающий трубопровод

Всасывающий трубопровод — наиболее ответственный участок для системы с поверхностным насосом. Ошибки при выборе диаметра трубы и монтаже на этом участке наиболее критичны для нормальной работы насоса.

В качестве всасывающего трубопровода рекомендуется использовать жесткие металлические или пластиковые трубы, а так же несминаемые гибкие армированные шланги. При монтаже старайтесь минимизировать количество резких сужений, расширений и поворотов всасывающего трубопровода.

Ключевые параметры всасывающей магистрали (рисунок ниже):

  • Нвс.факт — высота всасывания фактически (расстояние по вертикали от поверхности воды в источнике до входного отверстия насоса);
  • L — общая длина всасывающего трубопровода;
  • dвс. — внутренний диаметр всасывающего трубопровода.

Монтаж насоса, насосной станции

Для подбора насоса рекомендую воспользоваться нашим калькулятором подбора — Подбор насоса, насосной станции

ВАЖНО!

При монтаже магистрали трубопровода необходимо обеспечить непрерывный уклон трубы от насоса к источнику водозабора не менее 1 градуса, для исключения скопления пузырьков воздуха и образования воздушных пробок.

Монтаж насоса, насосной станции 2

ВАЖНО!

Для облегчения заполнения насоса и всасывающей магистрали водой перед пуском и предотвращения ее вытекания из системы при отключении насоса, необходимо установить на всасывающей трубе обратный клапан с сетчатым фильтром.

В случае работы насоса с подпором (вода сама поступает в насос из магистрали или емкости) также необходима установка обратного клапана на всасывающей магистрали сразу же на входе в насос.

Напорный трубопровод

К напорному трубопроводу не предъявляется таких жестких требований, как к всасывающему. Можно порекомендовать не заужать без необходимости диаметр труб, чтобы не создавать дополнительных потерь напора и производительности при подаче воды потребителю.

Мне нравится!5 Мне не нравится!0

Задавайте вопросы в комментариях, делитесь своим опытом, так же принимается любая конструктивная критика, готов обсуждать. Не забывайте делиться полученной информацией с друзьями.

www.allremont59.ru

Трубопроводы насосной станции

Трубопроводы насосной установки подразделяются на всасывающие и напорные, внутристанционные и наружные. Разные условия работы заставляют по-разному проектировать всасывающие и напорные трубопроводы. Разными принципами руководствуются при выборе материала и экономически выгодного диаметра наружных и внутристанционных трубопроводов.

Наружные напорные водоводы. При выборе их материала в первую очередь следует ориентироваться на неметаллические трубы: асбестоцементные, пластмассовые и железобетонные. Асбестоцементные рекомендуется применять для подачи технической воды при диаметрах до 500 мм включительно и напорах, не превышающих 120 м. При диаметрах свыше 500 мм и напорах до 90 м рекомендуется применять железобетонные трубы. При больших напорах, в условиях предприятий и населенных мест со сложными подземными коммуникациями, а также в других случаях при соответствующем технико-экономическом обосновании водоводы могут проектироваться стальными или чугунными.

Диаметры водоводов выбираются с учетом стоимости труб, производства работ и эксплуатационных затрат на электроэнергию, определяемых гидравлическим сопротивлением в трубопроводах. Чем меньше диаметр труб, тем меньше их строительная стоимость, однако, тем больше гидравлическое сопротивление и затраты на электроэнергию.

Оптимальным считается вариант с наименьшими суммарными затратами.

Расчетный расход одного напорного водовода

, (10)

где Qн.с – расчетная подача насосной станции; nн.в – число напорных водоводов.

Число напорных водоводов от станций I и II категории принимается не менее двух. Если при двух водоводах их диаметры оказываются более 1400 мм, то число водоводов увеличивают.

Для каждого диаметра при определенных условиях строительства и эксплуатации, характеризуемых так называемым экономическим фактором Э, существуют определенные расходы, при которых экономически оправдано применение именно этого диаметра.

Таблица 3

Предельные экономические расходы, л/с, для трубопроводов из разных материалов при Э = 1

Условный проход, мм Трубы
стальные чугунные асбесто- цементные железобетон­ные пластмас­совые
10,6 8,4 9,2 9,2
19,8 22,4 19,9
406, 407, 32,6
65,3 65,3 61,5
95,6 81,5

В табл. 3 для труб соответствующего материала и диаметра приводятся предельные наибольшие экономические расходы для условий, характеризуемых значением экономического фактора Э = 1.

Для выбора экономически выгодного диаметра по этой таблице вычисляют расход, приведенный к значению экономического фактора, равному единице

(11)

Пример. Определить диаметр стального водопровода при Qн.в = 800 л/с и σ =1,2 коп./(кВт·ч).

.

Определяем приведенный расход:

л/с.

Для расхода 725 л/с по табл. 3 принимаем трубопровод диаметром 900 мм.

Наружные всасывающие водоводы. Число линий таких водоводов на насосных станциях должно быть не менее двух. При выключении одной линии остальные должны быть рассчитаны на пропуск 100 % расчетного расхода для насосных станций I и II категории и 70 % расчетного расхода для III категории.

Расчетный расход одного всасывающего водовода определяется по формуле

, (12)

а для насосных станций III категории – по формуле

, (13)

где Qн.с – максимальная подача насосной станции; nв.в – число всасывающих водоводов.

Для водоводов, в которых возможен вакуум, рекомендуется принимать стальные трубы. Всасывающий трубопровод должен иметь непрерывный подъем к насосу с уклоном не менее 0,005. Диаметр всасывающего водовода выбирается с учетом рекомендуемых скоростей (табл. 4).

Внутренние трубопроводы насосных станций. Внутренние трубопроводы следует выполнять из стальных труб, соединенных на сварке. Диаметры труб внутри насосных станций принимаются несколько меньшими, чем для наружных водоводов, так как от размеров труб зависят размеры и стоимость здания насосной станции. Скорости движения воды, рекомендуемые СНиП для внутристанционных трубопроводов, приводятся в табл. 4.

Таблица 4

Скорости движения воды в трубопроводах насосных станций

Диаметр труб, мм Скорости движения воды в трубопроводах насосных станций, м/с
во всасывающем в напорном
≤ 250 0,6–1 0,8–2
300–800 0,8–1,5 1,0–3
> 800 1,2–2 1,5–4

Диаметры внутристанционных трубопроводов должны соответствовать стандартным диаметрам выпускаемой арматуры (задвижек, обратных клапанов), которая размещается на них. Диаметры труб, как правило, больше диаметров патрубков насосов и соединяются с ними переходами. Трубопроводы внутри насосной станции могут располагаться (рис. 13) над поверхностью пола с устройством мостков над трубопроводами; в мелких каналах – когда маховик задвижки возвышается над полом; в глубоких каналах; на кронштейнах у стен машинного зала; в подвалах.

Рис. 13. Способы размещения трубопроводов в машинном зале: I – над полом; II – в мелких каналах; III – в глубоких каналах;

IV – на стенах

Размеры каналов и минимальное удаление труб от стен и пола назначаются из условия возможности монтажа и обслуживания арматуры по табл. 5.

Таблица 5

Рекомендуемые размеры к размещению трубопроводов в машинном зале (см. рис. 13)

Размер, мм dy ≤ 400 При наличии арматуры При отсутствии арматуры
dy = = 450...600 dy > 600 dy = = 450...600 dy > 600
a
b
h
c
H

Трубопроводы могут размещаться комбинированно: часть – над полом, часть – в каналах и т.п.

Фасонные части. Фасонные части на трубах внутри насосных станций, как правило – стальные сварные. Стандартные размеры и вес фасонных частей для спецификации следует брать по справочнику. Ориентировочно при компоновке машинного зала их размеры можно принимать по рис. 14.

Рис. 14. Сварные фасонные части

Длина колена Lк (радиус закругления) принимается равной dy или 1,5dy. Длина переходов принимается Lп = (4...7) · (Dy – dy). У тройников Lт = 2Dy + С, где С ≥ 150 мм при Dу ≤ 150 мм и С ≈ ≈ 100 мм при Dy > 150 мм.

Расстояние до фланца на боковом подключении L = 0,5 Dy + + b, где b = 150 мм при dy ≤ 300 мм и b = 200 мм при dy > 300 мм.

Фланцевые соединения применяются при соединении трубопроводов с насосами в местах установки арматуры. Фланцы требуют постоянного внимания при эксплуатации, поэтому установка лишних фланцев не рекомендуется.

Всасывающие трубопроводы, давление в которых меньше атмосферного, должны проектироваться так, чтобы исключить возможность образования в них воздушных мешков.

Рис. 15. Устройства для прохода трубопроводов через стену: а – ребристый патрубок; б – сальник с нажимным устройством; в – набивной сальник; 1 – корпус; 2 – кольцевое ребро; 3 – фланец; 4 – уплотнитель; 5 – фланцевый нажимной патрубок; 6 – шпилька; 7 – упорное кольцо; 8 – сальниковая набивка; 9 – зачеканка

Пропуск труб через стены зданий насосных станций.Жесткая заделка труб в стены осуществляется с помощью ребристого патрубка, который омоноличивается в нужном месте при бетонировании стены (рис. 15, а). Приварное ребро увеличивает прочность заделки и уменьшает фильтрацию вдоль трубы. Концы патрубка могут быть гладкими (под сварку) или с приварными фланцами. Жесткая заделка труб применяется чаще всего в стенах внутри станций водоотведения и насосных станций I подъема совмещенного типа.

Гибкая заделка применяется в тех случаях, когда возможно повреждение труб при осадке здания, тепловых расширениях, в сейсмических районах. Она облегчает разъем фланцевых соединений при монтажных работах. При гибкой заделке используются сальниковые уплотнения двух типов: с нажимным устройством и без него (рис. 15, б, в). В обоих случаях корпус сальника омоноличивают в стене сооружения до пропуска через нее трубы. Диаметр патрубка корпуса принимается приблизительно на 50 мм больше диаметра пропускаемой трубы. Уплотнения выполняют в виде резиновых колец или просмоленного пенькового жгута. Затяжку и периодическую подтяжку сальника производят с помощью нажимного фланцевого патрубка, располагаемого со стороны сухого помещения. Сальники с нажимным устройством обладают хорошей эластичностью, надежностью и водонепроницаемостью, но в изготовлении сложнее ребристых патрубков. Поэтому их применяют в наиболее тяжелых условиях; ниже устойчивого уровня грунтовых вод, в стенах, отделяющих машинный зал от приемного резервуара в совмещенных насосных станциях, если это вызвано условиями монтажных работ.

Значительно проще по конструкции – сальник без нажимного устройства. В его корпусе отсутствует фланец, а внутри корпуса установлено упорное кольцо и два бурта.

Между упорным кольцом и буртом помещают набивку из просмоленной пеньковой пряди. Концы сальника зачеканивают асбестоцементной массой и заделывают битумной мастикой. Применяются такие сальники в маловлажных грунтах. В сухих грунтах в качестве набивки можно применять паклю и ветошь.

1.7. Построение графика совместной работы насосов и водоводов

Фасонные части и арматура обусловливают гидравлические потери напора в насосной станции hн.с. Эти потери вместе с потерями в водомерных устройствах hвдм и во всасывающих и напорных водоводах (hв.в и hн.в) составляют общие потери напора в насосной установке и вместе со статическим напором определяют необходимый напор насосов:

Н = Нст+ hв.в+ hн.с+ hвдм + hн.в = Нст + Σhω. (14)

Потери напора в насосной установке Σhω зависят от расхода, а подача (расход) насосов, в свою очередь, зависит от развиваемого ими напора, т.е. и от Σhω. Окончательные параметры (подача, напор) параллельно соединенных насосов, подающих воду по системе напорных водоводов, определяются после построения графика совместной работы насосов и водоводов. Для этого необходимо построить характеристику трубопровода – график, который показывает, какой напор должны развивать насосы для того, чтобы подать через систему всасывающих водоводов, трубопроводов внутри насосной станции и напорных водоводов расход Qн.с. На рис.16 представлены схема трубопровода, положение пьезометрических линий при подаче разных расходов и характеристика трубопровода.

а б

Рис. 16. К построению характеристики трубопровода: а – высотная схема; б – характеристика трубопровода

Пример графика совместной работы насосов и водоводов приведен на рис. 17. Как видно из схемы водоводов насосной станции на рис. 17, а, гидравлические потери в разных трубопроводах определяются разными расходами (Qв.в, Qн, Qн.в), зависящими от числа водоводов и насосов.

Рис. 17. Параллельная работа 4 насосов на два водовода с перемычками: а – схема водовода; б – характеристики насосов и водоводов

Потери напора во всасывающем водоводе определяются по формуле

, (15)

где 1000 · i – потери напора на 1 км трубопровода в метрах водяного столба, определяемые для расчетного расхода Qв.в в трубах заданного диаметра и материала по таблицам Шевелева; Lв.в – длина всасывающего водовода, км; Σξ – сумма коэффициентов местных сопротивлений; υ – скорость во всасывающем водоводе, м/с.

Потери напора в насосных станциях hн.с. рекомендуется определять в следующем порядке:

– на схеме трубопроводов в насосной станции указываются диаметры, арматура, фасонные части и расчетные расходы;

– определяется самый невыгодный для расчета потерь путь воды, на нем нумеруются местные потери; вычисление потерь сводится в таблицу.

Рис. 18. Схема к определению потерь напора в насосной станции

Пример составления схемы для определения потерь представлен на рис. 18, а выполнения вычислений – в табл. 6. Графы 1, 2, 3 и 4 таблицы заполняются в соответствии со схемой. Коэффициенты сопротивлений принимаются по справочной литературе. Для открытой запорной арматуры можно принимать ξ = 0,2.

Таблица 6

Определение потерь напора в насосной станции

Наименование местных сопротивлений d, мм Q, л/с ξ υ, м/с , м , м
Колено 0,6 1,43 0,105 0,06
2, 3 Задвижка 0,2´2 1,43 0,105 0,04
Задвижка 0,2 0,95 0,046 0,02
Тройник 1,5 1,32 0,089 0,13
6, 12 Задвижки 0,2´2 1,32 0,089 0,04
7, 10 Колена 0,6´2 1,32 0,089 0,1
Переход сужающийся 0,1 1,88 0,18 0,02
Переход расширяющийся 0,25 2,91 0,432 0,11
Обратный клапан 1,7 1,32 0,089 0,15
Тройник 1,6 1,32 0,089 0,14
Задвижка 0,2 0,66 0,017
15, 16 Задвижки 0,2´2 1,97 0,198 0,08
Колено 0,6 1,97 0,198 0,12

Потери во всасывающих трубопроводах, в насосной станции и в водомерном устройстве можно считать пропорциональными квадрату подачи насосной станции. Таким образом, для определения потерь при произвольном расходе

hн.с = Σ =1,01 м.

При вычислении значения Q можно пользоваться формулами:

, и , (16)

где

K = (17)

Таблица 7

Расчеты для построения характеристики трубопроводов насосной станции

Значение потерь, м Относительный расход
0,33 0,5 1,3
Два водовода
Нст
hв.в 0,04 0,1 0,4 0,68
hн.с 0,11 0,25 1,01 1,71
hвдм 0,1 0,22 0,89 1,5
hн.в 1,37 3,14 12,57 21,26
Н2d=(1)+(2)+(3)+(4)+(5) 21,62 23,71 34,87 45,15
Один водовод
hн.в1 5,49 12,57 50,25  
Нd=(1)+(2)+(3)+(4)+(7) 25,74 33,14 72,58  
Два водовода, одна перемычка. Авария
hн.в2 3,42 7,86 31,4 53,11
На1=(1)+(2)+(3)+(4)+(9) 23,67 28,43 53,7
Два вывода, две перемычки. Авария
hн.в3 2,73 6,29 26,1 42,49
На2=(1)+(2)+(3)+(4)+(11) 22,98 26,86 47,4 66,38

Потери напора в напорном водоводе для всех расходов определяются по формуле

hн.в = (1,1 ... 1, 2) 1000 · i · Lн.в, (18)

где 1000 · i – то же, что в формуле (15), но уже для труб и расходов напорных водоводов.

Местные потери в напорных водоводах учитываются в размере 10–20 % потерь напора по длине.

Пример подсчета по формуле (14) необходимых напоров для подачи расходов 0,33Qн.с, 0,5Qн.с, Qн.с и 1,3 Qн.с, где Qн.с – расчетная подача насосной станции, приводится в табл. 7. По результатам расчетов строится характеристика водоводов (рис. 17, б).

Насосы водопроводных и водоотводных насосных станций чаще всего подают воду в водоводы, состоящие из двух линий (реже – из трех). При аварии на одной из линий вся подача насосной станции осуществляется по одному трубопроводу, т.е. Qн.в принимается равным Qн.с. При этом увеличиваются потери в напорном водоводе. Такой случай также рассчитывается в таблице и характеристика системы при одном водоводе строится на графике. Характеристика 2d соответствует работе водовода в две линии, характеристика d – в одну. Потери при водоводе в одну линию в 4 раза больше, чем при водоводе в две линии.

Для увеличения пропускной способности водоводов в случае аварии на них устраивают перемычки. Тогда при аварии водоводы работают в одну линию только на участке между перемычками. Если перемычки делят водоводы на равные участки, то при одной перемычке в случае аварии потери в напорном водоводе возрастают в 2,5 раза по сравнению с нормальной работой двух водоводов, а при двух перемычках – в 2 раза. При необходимости рассчитываются и строятся характеристики водоводов с одной, двумя и более перемычками.

На график с характеристиками водоводов переносится характеристика выбранного насоса. Затем, увеличивая в 2, в 3 раза и т.д. подачу при соответствующих напорах, строят графики совместной работы двух, трех и так далее параллельно соединенных центробежных насосов. На графике строятся характеристики совместной работы всех, включая и резервные, насосов насосной станции. Точки пересечения соответствующих характеристик насосов и водоводов определяют режимные характеристики (подачу, напор, КПД) насосов. По этому графику определяется ступенчатая подача насосной станции, т.е. подача при работе одного, двух и т.д. насосов.

1.8. Оборудование систем заливки насосов, технического водоснабжения, дренажа и осушения

Для обеспечения нормальных условий эксплуатации основного оборудования и сооружений насосной станции необходимо устройство различных вспомогательных систем, также использующих насосные и воздуходувные установки, вентиляции, маслоснабжения, заливки насосов (вакуум-систем), дренажа, осушения, удаления осадка, технического водоснабжения. Рассмотрим некоторые из этих систем, разрабатываемые в курсовом проекте.

Рис. 19. Схема к определению объема воздуха, откачиваемого при заливке насоса

Система заливки насосов (вакуум-система). Используется в насосных станциях I подъема раздельного типа для уменьшения заглубления машинного зала и удешевления строительства. Как правило, в насосных станциях систем водоснабжения или водоотведения корпус насоса располагается «под залив» от расчетного уровня воды в водоеме или емкости. Это значительно упрощает запуск насосов. В насосных станциях II и III категорий допускается установка насосов не под залив. Изредка встречаются схемы запуска насосов, расположенных выше уровня воды, на насосных станциях II подъема. Согласно действующим нормам в этих случаях следует предусматривать установку с вакуум-насосами и вакуум-котлом.

Требуемую подачу вакуум-насоса определяют исходя из времени, необходимого для заливки насоса, по формуле

, (19)

где Wн + Wтр – объем воздуха в насосе и заливаемой части трубопровода (как правило, до задвижки на напорном трубопроводе, рис. 19), м3; k – коэффициент запаса, учитывающий возможность проникновения воздуха через неплотности (сальники, фланцевые соединения); принимается равным 1,05... 1,1; t – время, требуемое для создания необходимого для заливки разрежения, мин; t = 3...10 мин; Hs – геометрическая высота всасывания насоса, считая от оси насоса до расчетного уровня воды в приемной камере (резервуаре) при запуске, м; На – напор, соответствующий барометрическому давлению; в обычных условиях принимается равным 10 м.

В качестве вакуум-насосов системы заливки чаще всего принимаются водокольцевые насосы: КВН – консольный вакуум-насос, ВВН – водокольцевой вакуум-насос, РМК – ротационная машина-компрессор (табл. 8).

Таблица 8

Технические характеристики вакуум-насосов

Показатели КВН-4 КВН-8 ВВН-0,75 ВВН-1,5 ВВН-3 РМК-1 РМК-2
Подача Qв.н, л/с 6,7 13,5 12,5
Максимальный вакуум, 0,8 0,8 0,6 0,8 0,8 0,9 0,92
Мощность электродвигателя, кВт 1,7 2,8 1,2 7,5 4,5
Габариты, мм:              
– длина
– ширина
– высота
– диаметр патрубка, мм
– масса насоса, кг

Для того чтобы постоянно поддерживать резервные насосы в залитом состоянии, в вакуум-систему включают вакуум-котел (рис. 20). Создав определенный вакуум в системе и вакуум-котле, вакуум-насосы автоматически отключаются. Подсасываемый в систему через неплотные соединения воздух постепенно уменьшает вакуум. При определенных малых значениях вакуума в вакуум-котле вакуум-насосы автоматически включаются.

Рис. 20. Схема заливки основных насосов при помоги вакуум-котла: 1 – основные насосы; 2 – ручной насос; 3 – вакуум-насосы; 4 – водоотделитель вакуум-насосов; 5 – заливочный бачок-отстойник; 6 – воздушная магистраль; 7 – вакуум-котел; 8 – сигнализатор уровня; 9 – клапан выпуска воздуха или вентиль с электроприводом

Расчетный объем вакуум-котла Wв.к принимают, исходя из условия, чтобы вакуум-насос, поддерживающий расчетный уровень вакуума в котле, включался не более 4 раз в час:

Wв.н = 900·Qп(1 – ), (20)

где Qп – подсос воздуха, л/с; Qв.н – подача вакуум-насоса, л/с.

Подсос воздуха в систему принимают в зависимости от диаметра всасывающего патрубка заливаемого насоса:

Диаметр всасывающего патрубка, мм до 150 150–300 300–600 600–1200
Подсос Qп, л/с 0,014 0,028 0,056 0,112

Дренажные насосные установки. Эти установки предназначены для откачки из подземной части насосной станции грунтовых вод, фильтрующих через стены здания, утечек через сальники насосов и воды, изливающейся при ремонте оборудования. Для сбора дренажных вод в машинном зале устраивается дренажный колодец. Объем колодца принимают равным подаче дренажного насоса в течение 10–15 мин. Вода к колодцу подводится дренажными лотками, расположенными у стен. Пол делается с уклоном в сторону лотков (0,002–0,005).

В насосных станциях I подъема с забором из открытого водоисточника дренажная вода откачивается обратно в водоем, в насосных станциях водоотведения – в приемный резервуар, в насосных станциях II подъема – в наружную систему водоотведения. Глубина насосной станции определяет статический напор дренажных насосов, а гидравлические потери принимаются равными 2–4 м.

Подача дренажных насосов определяется по формуле

Qд = (1,5 ... 2)(Σq1+q2), (21)

где Σq1 – суммарные утечки через сальники, по 0,05...0,1 л/с на каждое сальниковое уплотнение; q2 – фильтрационный расход через стены и пол здания, л/с.

Ориентировочно q2, л/с, определяют по формуле

q2 = 1,5 + 0,001W,

где W – объем части машинного зала, расположенной ниже максимального уровня грунтовых вод, м3.

В качестве дренажных удобно применять вихревые консольные самовсасывающие насосы ВКС или погружной центробежный моноблочный канализационный насос ЦМК 16/27, технические характеристики которых приведены в табл. 9. Дренажных насосов устанавливают не менее двух (один – резервный). Запуск и выключение насосов производятся автоматически от поплавковых реле уровней в дренажном колодце. Насосы ВКС устанавливаются на фундаментах, а ЦМК опускаются в приямок.

Таблица 9

Технические характеристики насосов ВКС и ЦМК

Марка Подача, л/с Напор, м Мощность, кВт Масса, кг Габариты в плане, мм Н , м
ВКС 2/26 0,75–2,2 60–20 5,5 947´320
ВКС 4/24 1,58–4,3 70–20 7,5 1005´360
ВКС 5/24 2,38–5,4 70–20 1047´320
ВКС 10/45 5,0–11,1 85–30 1197´430
ЦКМ 16/27 4,4 2000´200

Система осушения. Предназначена для откачки воды из всасывающих трубопроводов и приемных камер основных насосов и из машинного зала в случае его затопления при аварии.

Специальная система удаления осажденных наносов из камер водозаборных сооружений. Применяется на насосных станциях I подъема.

Система технического водоснабжения разрабатывается в курсовых проектах насосных станций I подъема и водоотведения. Она проектируется для подачи воды на смазку и охлаждение подшипников и уплотнение сальников. Расход технической воды определяется по паспортным данным основных насосов. Ориентировочно можно принимать по 0,5–1 л/с на каждый рабочий агрегат. Напор в техническом водопроводе должен на 2–10 м превышать напор основных насосов.

В насосных станциях I подъема техническая вода перед подачей к насосам может очищаться на фильтрах. В насосных станциях систем водоотведения насосы технического водопровода забирают воду из хозяйственно-питьевого водопровода через бак разрыва струи. В системах технического водоснабжения чаще всего применяют насосы типа ВК, ВКС или К: один – рабочий, один – резервный.

2. ПРОЕКТИРОВАНИЕ ВОДОПРОВОДНОЙ НАСОСНОЙ СТАНЦИИ II ПОДЪЕМА

2.1. Определение расчетной подачи насосной станции. Проектирование водоводов.

Гидравлический расчет водоводов

Насосная станция II подъема подает воду из резервуаров чистой воды, расположенных после очистных сооружений водопровода, в разводящую сеть населенного пункта.

В курсовом проекте рассматривается насосная станция на объединенном водопроводе, обеспечивающем и пожаротушение, поэтому ее следует относить к I категории. На водопроводах, обслуживающих населенные пункты с числом жителей до 5000 чел. (максимальный суточный расход до 3000 м3/сут), при расходе воды на наружное пожаротушение не более 10 л/с допускается противопожарное водоснабжение предусматривать из резервуаров или водоемов и насосную станцию II подъема относить ко II категории.

В курсовом проекте насосное оборудование подбирается на подачу расчетного расхода в час максимального водоразбора и проверяется на подачу пожарного расхода, транзитного расхода в башню (при схеме с контррезервуаром), расчетного расхода при аварии на одной из ниток водоводов.

В дипломном проекте следует учитывать, что в насосной станции II подъема могут устанавливаться насосы для подачи воды на промывку фильтров.

Расчеты начинают с построения графика почасового водопотребления (рис. 21). Почасовое водопотребление в процентах от суточного обычно приводится в задании на курсовой проект.

Рис. 21. Почасовый график водопотребления города и подачи насосной станции II подъема:

1 – производительность насосной станции при подаче в диктующую точку; 2 – то же, при подаче в контррезервуар

При безбашенной схеме расчетная максимальная подача насосной станции равна максимальному часовому расходу:

(22)

При наличии башни расход в час максимального водоразбора может поступать в сеть из башни, что позволяет уменьшить расчетную максимальную подачу насосной станции:

(23)

Регулирующий объем башни принимается равным 2,5–6 % суточного водопотребления. Максимальный объем резервуара типовой водонапорной башни 800 м3. Так как резервуар должен быть рассчитан на десятиминутный пожарный и регулирующий объем воды, регулирующий объем следует принимать не более 700–750 м3. Расчетная подача насосной станции определяется подбором: линия, соответствующая , подбирается на графике часового водопотребления таким образом, чтобы площадь графика, расположенная выше этой линии и представляющая собой регулирующий объем, соответствовала объему 700–750 м3 (см. рис. 21).

От насосной станции в сеть вода, как правило, подается по двум напорным водоводам. При равных длине и диаметре водоводов по каждому из них идет половина подачи насосной станции. Водоводы могут подключаться к разным точкам сети и при этом иметь разные длины и диаметры. В таком случае водоводы образуют дополнительное кольцо водопроводной сети, а расходы и потери напора в водоводах определяются в результате гидравлического расчета кольцевой сети.

При параллельном соединении водоводов жидкости от насосов насосной станции I или II подъема, подходя к точке их разветвления, распределяются по ответвлениям и снова сливаются в точке соединения (рис. 22). Эта точка является обычно начальной условной точкой сложной разветвленной сети.

Рис. 22. Параллельное соединение трубопроводов

Сумма расходов по отдельным водоводам равна начальному расходу насосной станции до ответвления.

Потери напора на каждой отдельной ветви равны между собой.

где А – удельное сопротивление трубопровода; S – сопротивление трубопровода, l – длина трубопровода.

Распределение расходов по отдельным ветвям сети происходит прямо пропорционально проводимости каждой сети:

где Р – проводимость каждой линии, и обратно пропорционально сопротивлению каждой линии:

Исходя из равенства потерь на каждой ветви, можно написать:

Зная общие потери напора, можно определить общее сопротивление водоводов и рассчитать расход воды по каждой ветви.

Аналогичный результат можно получить графическим построением характеристики каждого трубопровода при их параллельной работе и получением суммарной характеристики всех водоводов (рис. 23).

Рис. 23. Схема построения суммарной характеристики водоводов при параллельной работе

Значение расхода по каждой ветке получается при нахождении точки А на суммарной характеристике водоводов и проведении через точку А линии, параллельной оси абсцисс, до пересечения с индивидуальными характеристиками водоводов.

В курсовом проекте предполагается, что длина, диаметр и пьезометрический напор в конце каждого водовода одинаковы.

Водоводы рекомендуется проектировать из металлических труб. В результате технико-экономического расчета выбирается диаметр напорных водоводов. При продолжительности максимальной расчетной подачи насосной станции менее 6 ч в сутки выбор экономически выгодного диаметра напорных водоводов можно производить для уменьшенного расхода (9...0,95) .

Подбор насосного оборудования производится на основании установленных величин напора и расходов. Расход устанавливается по величине максимального часового расхода в зависимости от нормы потребления и общего количества.

Значение величины требуемого напора для кольцевых водопроводных сетей производят с учетом их совместной работы с насосными станциями и с регулирующими емкостями (башня).

В зависимости от расположения насосной станции и водонапорной башни в начале сети:

– первый случай – на максимальный хозяйственно-производственный расход, совпадающий с расходом на внутреннее пожаротушение;

– второй случай – на максимальный хозяйственно-производственный расход, совпадающий с расходом на наружное и внутреннее пожаротушение.

Для случая расположения башни в начале сети полный требуемый напор определяется по формуле

где Hг – геометрическая высота подъема воды.

где Нрез.башни – отметка низа резервуара башни; Нист – отметка зеркала воды в резервуаре.

Эта величина зависит от первого или второго расчетного случая и может колебаться в пределах 3–4 м.

Величи

Дата добавления: 2016-06-29; просмотров: 7325; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Похожие статьи:

poznayka.org

Какую насосную станцию выбрать для автономного водоснабжения

Всасывающий трубопровод считается самым ответственным участком для системы поверхностных насосов. Ошибка при выборе диаметра трубы и монтажа на этом участке наиболее критичны для работ насоса.

В качестве всасывающего трубопровода рекомендую использовать пластиковые трубы или не сминаемые гибкие армированные шланги. При монтаже постарайтесь минимизировать количество резких сужений, расширений, а так же поворотов трубопровода.

Расчет потерь напора во всасывающей магистрали

[wpcc id=»35″]

Для расчета нам понадобится высота участка трубопровода по вертикали и длина трубопровода по горизонтали.

Расчет потерь напора во всасывающей магистрали

Полученный результат необходимо сравнить с Показателем вертикального напора всасывания поверхностного насоса. Как правило это 7м., 8м., 9 метров (Акватехника, Джилекс, AQUARIO, WILO соответственно). Итак, если ваша итоговая цифра больше показателя всасывающего напора насоса, насос не будет работать.

Устройство насосной станции

Так же попробуйте изменять диаметр трубы.

ВАЖНО!

При монтаже всасывающего трубопровода необходимо обеспечить непрерывный уклон трубы от насоса к источнику водозабора не менее 1 градуса, для исключения скопления пузырьков воздуха и образования воздушных пробок.

Задавайте вопросы в комментариях, делитесь своим опытом, так же принимается любая конструктивная критика, готов обсуждать. Не забывайте делиться полученной информацией с друзьями.

Не нашли что искали? Смотрите еще:

www.allremont59.ru

Диаметр трубы для поверхностного насоса: как добиться высокого КПД оборудования

В доме за городом для бытовых и хозяйственных нужд воду приходится добывать из-под земли в прямом смысле этого слова. Для полива приходится пользоваться услугами ближайшего водоема. Поэтому не обойтись без насосного оборудования. Эра ведер с коромыслами давно миновала. Пришло время пользоваться достижениями прогресса. Однако и здесь есть свои тонкости. Например, неправильно подобранный диаметр поверхностного насоса может негативно сказаться на эффективности работы всей станции.

Что нужно знать об эксплуатации поверхностных насосов ↑

Поверхностные насосы зарекомендовали себя как надежные помощники в ведении приусадебного хозяйства. Сфера их применения обширна:

  • насосные станции для полноценного снабжения водой дома и служб;
  • организация полива – из шланга, налаживание оросительной системы;
  • подача воды для работы фонтана.

При работе оборудование не погружено в среду, а располагается на поверхности, чем обусловлено название данного типа устройств. Такое размещение несколько сужает возможности:

  • предельная глубина, с которой осуществляется подъем воды, составляет 7-8 м;
  • на зиму насосную станцию консервируют или изыскивают возможность установки в помещении с t выше 0°С, чтобы насосные коммуникации не замерзли и не вышли из строя;
  • производительность ниже, чем у мощных погружных насосов.

С другой стороны, приборы этого типа обладают рядом неоспоримых достоинств:

  • компактность и отсутствие необходимости в стационарном монтаже, что актуально для дачников, предпочитающих хранить все имущество в домике;
  • мобильность – их без труда перемещают в нужное место, одно устройство используют как для подъема воды из колодца, так и для полива;
  • доступная стоимость и недорогой сервис.

Если на участке есть артезианская скважина или колодец с хорошим дебитом, одного насоса вполне достаточно для полноценного обеспечения водой. В среднем производительность оборудования составляет 3-5 куб./м в час. Этого объема с лихвой хватит семье из 3-4 человек, останется вода для скотного двора (если есть хозяйство), полива дачного или приусадебного участка.

ВАЖНО ЗНАТЬ: Диаметр трубы для поверхностного насоса, как правило, составляет 1 дюйм. Данного сечения достаточно для достижения паспортной производительности оборудования.

Схема подачи воды с помощью поверхностного насоса с указанием диаметра используемых труб

Как собрать насосную станцию ↑

Сам по себе насос не будет работать эффективно. Для достижения максимального КПД необходимо должное оснащение и наличие дополнительного оборудования.

Автономное водоснабжение ↑

Обычно источниками воды служат колодец или абиссинская скважина. Для устройства простейшей насосной системы понадобятся:

  • Штуцер для всасывающего шланга или трубы. Представляет собой патрубок с резьбовым соединением и накидной гайкой.
  • Шланги или трубы, которые подсоединяются к входному и выходному отверстиям насоса. Как правило, их диаметр составляет 1 дюйм. У насосов, максимальный напор которых достигает 90 м, диаметр может составлять ¾ дюйма. При сборке станции обязательно обращают внимание на данный параметр.
  • Обратный клапан. Препятствует обратному оттоку воды в колодец.
  • Сетчатый фильтр. Закрепляется на конце всасывающего шланга и задерживает механические примеси и загрязнения.
  • Поплавковая защита, которая отключит насос, если вода иссякнет.

Аналогичным образом собирают конструкцию для поливальной станции с забором воды из водоема.

В повседневной эксплуатации наиболее эффективны насосные станции с гидроаккумулятором

Централизованное водоснабжение ↑

Некоторые населенные пункты в сельской местности имеют централизованный водопровод, однако мощности напора недостаточно, чтобы вода текла из крана. Или, например, в уличной колонке вода может идти, а в доме с высоким фундаментом или цокольным этажом в кране будет сухо. Наладить бесперебойное снабжение поможет поверхностный насос.

Схема подключения будет следующей:

  • магистральный водопровод;
  • накопительный резервуар (искусственный колодец, необходим для защиты насоса от перепадов давления);
  • насосная станция (аналогичная описанной выше);
  • водораспределитель для точек потребления – кухня, службы, ванная.

В этом случае (впрочем, как и при заборе воды из колодца) целесообразно установить расширительный бак, с помощью которого регулируется давление, под которым поступает вода.

ВАЖНО ЗНАТЬ: Насосную станцию желательно разместить в отдельном помещении, т.к. оборудование при работе издает шум.

Подробная схема устройства насосной станции с размещением оборудования на уровне цокольного этажа

Особенности всасывающего водопровода ↑

Забор воды из колодца и любого открытого водоема поверхностным насосом с последующим распределением в местной сети коммуникаций относится к так называемому всасывающему типу трубопровода. При его устройстве важно не ошибиться с диаметром и материалом труб. Рекомендуется использовать:

  • стандартные металлические или трубы из ПВХ;
  • гибкие армированные шланги.

При прокладке коммуникаций следят, чтобы не было резких поворотов, заломов, изгибов. Если вовремя не заметить и не устранить изъян, можно остаться без насоса, особенно если он работает в автоматическом режиме. Вода, встретив препятствие, перестанет поступать в трубопровод.

С помощью поверхностного насоса можно устроить автоматическую поливальную станцию

Бытует заблуждение, что какой диаметр поверхностного насоса ни возьми, все равно лучше тот, у которого больше сечение. Это не так. Беспричинное изменение рекомендаций производителя приведет к большему использованию ресурса оборудования, но никак не повлияет на производительность.

При расчетах отталкиваются от простой математики: соотношение высоты подъема воды по вертикали и горизонтали составляет 10:1. Планируя полив с забором воды из водоема или установку насосной станции следует помнить, что чем ближе находится насос к источнику, тем на большее расстояние можно передать воду без существенных потерь КПД.

Если же насос установлен на удалении, то соотношение вертикаль-горизонталь составит всего 4:1. Это значит, что при глубине забора воды в 5 м, расстояние от источника до насоса не может превышать 12 м. В противном случае насос будет работать практически впустую, и попытка исправить ситуацию, увеличив или уменьшив диаметр труб, не увенчается успехом.

При оборудовании поливальной станции обязательно учитывают расстояние до источника. Если оно превышает 4 м по вертикали или 12 м по горизонтали, для большего забора воды выбирают шланг диаметром 1¼ дюйма для моделей с входным отверстием 1″ и 1 дюйм для образцов с паспортным значением ¾”.

Чтобы не потерпеть крах при сборке насосной станции и не ошибиться в сечении импровизированного водопровода, лучше всего обратиться к опытным специалистам. Они помогут с подбором подходящего оборудования, выполнят монтаж всех узлы и пуско-наладочные работы. Станция будет работать, как качественный часовой механизм, – безотказно – и исправно снабжать водой для всевозможных бытовых нужд.

Видео: как уменьшить диаметр насоса ↑

aqua-guru.ru


Смотрите также