(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Диаметр выхлопной трубы


Выбираем диаметр выхлопной трубы на авто

Владельцу автомобиля приходится подбирать диаметр выхлопной трубы, чаще всего, в целях модификации их «железного друга». Правильно подобрать размеры конструкции очень важно, ведь в ином случае понизится мощность, уменьшиться безопасность вождения. Основная функция выхлопных труб – уменьшение шума от двигателя посредством вывода скопившихся газов и эффекта глушения. Чем эффективнее вывод газов, тем меньшее давление будет в выхлопной системе, что увеличивает мощность двигателя.

Выхлопная труба авто

Неопытные поклонники тюнинга часто применяют трубу с большими диаметрами, что ухудшает мощность. Однако при расчете значение имеет не только величина вывода, но и иные факторы: особенности потока, скорость движения газов. Конструкции с большим диаметром делают поток медленнее, изделия с небольшими размерами – наоборот, быстрее. Важен баланс между скоростью движения газов и впуском объема двигателя. Следует избегать создания обратного давления, когда газы, для которых не обеспечен быстрый вывод, задерживаются в системе.

Идеальная система: несколько труб различных размеров для каждого диапазона оборотов. Однако это решение не является доступным для многих людей, поэтому устанавливается система, подходящая под все обороты, в том числе и под высокие.

В некоторых автомобилях установлена система двойного диаметра, что повышает мощность, но уменьшает крутящие параметры. Выхлопные трубы рекомендуется полировать для того, чтобы вывод газов был быстрее за счет уменьшения трения.

Параметры систем вывода газов зависят от объема воздуха, перерабатываемого двигателем. Объем воздуха же зависит от мощности и объема двигателя. В соответствии с этой информацией можно порекомендовать примерные размеры труб.

К примеру, на 1,6 литровый двигатель устанавливаются выхлопные трубы диаметром 3,8-5 см. На 2,5 литровый двигатель достаточно конструкций размером 5 – 6,4 см. Для двигателей большего размера можно установить конструкции размером 7,6 см. Если объем двигателя выше 2,5 литра, лучше потратиться на двойную систему вывода газов. Как очевидно, чем выше объем двигателя, тем большим должен быть размер трубы.

Для того чтобы определить размер выхлопной конструкции в двойной системе требуется поделить объем двигателя на два, а затем производить расчет в соответствии с правилами, данными выше. К примеру, мотор на 3 литра оборудуется двумя выхлопными конструкциями на 3,8 и 5 см, мотор на 5 литров – конструкциями на 5 см и 6,4 см.

Под этими параметрами подразумевается один размер на протяжении всей выхлопной конструкции (в том числе глушитель). Теоретически глушитель и выхлопную конструкцию можно сделать больше, однако на мощность это не повлияет, однако сделает звуки ниже.

В том случае, если соединение имеет конусообразную форму, можно выполнить установку большей и меньшей конструкции. Так увеличится скорость движения газов. Конструкции с большим диаметром, напротив, сделают движение газов медленней. В конструкцию не должен помещаться кулак. В этом случае она однозначно велика и снижает эффективность системы.

Дополнительные рекомендации

На показатели мощности также влияет форма коллектора. Лучше приобретать модифицированные коллекторы. Они обеспечивают наилучший результат. Обычную систему для вывода газов можно улучшить, пройдясь по внутренней поверхности шлифовальным кругом, зафиксированным на дрель. Также можно сделать систему из нержавеющей стали. Это тоже позволяет улучшить показатели.

Оптимальные системы: 4-2-1. То есть, начало системы – это 4 конструкции, соединяющиеся в 2, а затем в одну. Также существуют системы 4-1 и 4-2. Они обеспечивают максимальную мощность и эффективны при предельно высоких оборотах. Часто такие системы устанавливаются на гоночные автомобили.

В том случае, если диаметр труб слишком велик, движение газов уменьшится. Тот же эффект оказывают катализаторы. Однако, если вы можете заменить старую конструкцию на новую с нормальными размерами, то катализатор убрать нельзя, так как это обязательная деталь авто. Увидеть типы выхлопных конструкций и различные системы для машин вы можете на фото.

Как рассчитать размер глушителя и Диаметр выхлопной трубы — Лада 2101, 1.6 л., 1973 года на DRIVE2

Сухая теория1. Диаметр выхлопной трубы завода, как правило подходит для большинства транспортных средств. За исключением заряженных авто с измененными фазами и объемом ДВС.

2. Производители производят расчет за вас- не нужно изобретать колесо. Если они говорят, что это будет работать для вашего автомобиля, это вероятно, будет работать для вашего автомобиля.

ая теория

Мы попытаемся рассмотреть проблему с научной точки зрения

1) Масса воздуха, прокачиваемая системой + массы топлива = масса выхлопных газовСохранение массы, верно?

2) Для того, чтобы рассчитать объем потребляемого воздуха двигателем за один оборот коленчатого вала — мы умножим объем двигателя на обороты двигателя, и разделим на 2 (это займет два полных оборота для двигателя, чтобы исчерпать это весь объем воздуха). Мы затем преобразовать, что объема в массу.

3) Расчеты приводится с учетом погрешности полного сгорания топливно воздушной смеси.

4) После того, как вы рассчитаем массу выхлопных газов производим расчет объема выхлопных. Конечно, так же необходмо учитывать расширение газов при учеличении температуры в двигателе.

Вот это! Конечно, когда вы садитесь, чтобы понять это, вы обнаружите, что получаете хорошую научную оценку занимает много работы (который является, почему мы не возиться с ней здесь).Способы расчета выхлопной системы (Очень приблизительно):

По лошадиным силам: В среднем система прокачивает 1,5 CFM (2,55 Метра кубических) на одну лошадиную силу. С Учетом расширения воздуха выхлопная система должна прокачивать 2.2 CFM (3,74 Метра кубических) на одну лошадиную силу. Так же следует учесть что наполнение целиндров падает более чем в 2 раза при увеличении оборотов двигателя (В зависимости от фаз впуска выпуска и перекрытия клапанов)

По объему двигателя: Количество оборотов коленчатого вала RPM умножаем на Объем двигателя делим на 2 (для 4-ех тактного двигателя 4-ех целиндрового двигателя).

Расчетная таблица. Подбор диаметра выхлопной системы 4-1, 4-2-1 исходя из нижеуказанной таблицы

Расчетный внутренний Диаметр трубы (мм) Объем прокачиваемого воздуха (метров кубических) Лошадиных сил (Max).38 мм 290,7 15541 мм 345,1 18544 мм 406,3 21751 мм 540,6 28957 мм 693,6 37164 мм 865,3 46369 мм 1057,4 56676 мм 1269,9 67982 мм 1499,4 80289 мм 1749,3 935

ПРИМЕЧАНИЕ: Цифры являются приблизительными базирующиеся на максимальную мощность Двигателя. Таблица не учитывает особенности Газо-распределительного механизма (Фаза впуска и выпуска, перекрытие итп)

В приведенной выше таблице, мы выяснили, что атмосферному двигателю с 155 л.с. требуется 40-овая труба. К примеру на автомобиль Лада Приора, Калина, Четырка, Десятка с мощностью менее 150 лошадиных сил — установка 50 трубы пойдет во вред.

Необходимо учитывать — что для турбированных моторов — совсем другой подход к расчету выхлопной системы

Доводка выхлопной системы атмосферных ДВС

Конструкция выхлопной системы для двигателей без турбокомпрессора (так называемых «атмосферников») несколько отличается от конструкции выхлопной системы для турбированных двигателей, причём большая часть отличий относится к «головной» части выхлопной системы и в частности к выпускному коллектору.

Цель выхлопной системы «атмосферников» такая же, как и у турбированных двигателей – с максимально возможной скоростью и с созданием минимального противодавления отвести ОГ в атмосферу, но на этом все сходства заканчиваются. Дальше начинаются компромиссы, необходимые для соблюдения требований по шумности, экологичности и компоновке, причём некоторые из этих компромиссов неизбежно приводят к определённым потерям мощности.

Выпускной коллектор

Конструкция выпускного коллектора оказывает наиболее существенное влияние как на мощностную характеристику двигателя, так и на развиваемую им максимальную мощность. «Правильность» конструкции выпускного коллектора определяется огромным количеством факторов. Важным фактором является конструкция участка слияния потоков ОГ, отводимых от отдельных цилиндров. Существует два варианта конструкции таких участков для четырёхцилиндрового двигателя: «421» и «41». В варианте «421» два первичных выпускных трубопровода объединяются в один вторичный, после чего два получившихся вторичных трубопровода объединяются между собой. В варианте «41» четыре первичных выпускных трубопровода сходятся в одной точке. Оба варианта имеют свои преимущества, но в варианте «41» импульсы выхлопов взаимодействуют друг с другом таким образом, что достигается максимальный крутящий момент. Ниже приведено схематичное изображение обоих вариантов:

Диаметр первичных выпускных трубопроводов

При небольшом объёме отводимых ОГ уменьшение диаметра первичных выпускных трубопроводов позволяет увеличить скорость протекания по ним потока ОГ. Чем больше предполагаемый объём отводимых ОГ, тем больше должен быть диаметр первичных выпускных трубопроводов.

Объём отводимых ОГ зависит от рабочего объёма, частоты вращения вала и нагрузки двигателя. Чем больше объём каждого цилиндра, тем больше должен быть диаметр отходящего от этого цилиндра первичного выпускного трубопровода.

Сказанное действительно и для частоты вращения вала двигателя: чем больше эта частота, тем больший объём ОГ выпускается из цилиндра за единицу времени и тем большим должен быть диаметр отводящего эти ОГ первичного выпускного трубопровода. Объём выпускаемых из цилиндра ОГ увеличивается и с увеличением нагрузки двигателя.

Таким образом, оптимальные размеры первичных выпускных трубопроводов определяются в каждом конкретном случае как компромисс между потребностью увеличить скорость протекания потока ОГ и потребностью увеличить пропускную способность трубопровода.

При чрезмерно большом диаметре первичного выпускного трубопровода невозможно обеспечить требуемую скорость протекания потока ОГ. Снижение скорости этого потока приводит к снижению крутящего момента, причём значительное снижение этой скорости приводит также и к снижению развиваемой двигателем максимальной мощности.

Разумный компромисс между скоростью и пропускной способностью позволяет обеспечить как хороший крутящий момент на малых оборотах, так и достаточную тягу на высоких оборотах.

Длина первичных выпускных трубопроводов

Длина первичных выпускных трубопроводов оказывает заметное воздействие на мощностные характеристики двигателя. Увеличение этой длины улучшает тягу на низких оборотах, в то время как её уменьшение улучшает тягу на высоких оборотах. Указанная зависимость объясняется той зависящей от длины выпускных трубопроводов разницей во времени, с которой ударные волны, распространяющиеся в выпущенных из цилиндра ОГ, отражаются и возвращаются обратно в цилиндр. Эти ударные волны возникают в первичном выпускном трубопроводе в момент открытия выпускного клапана, причём, пройдя по всему трубопроводу, эти волны отражаются от выпускного коллектора и частично возвращаются обратно в цилиндр. Вернувшись в цилиндр, такие волны способствуют удалению из цилиндра ОГ и всасыванию в цилиндр воздуха. Увеличение количества воздуха и топлива в цилиндре приводит к увеличению развиваемой двигателем мощности. Данный эффект также известен как эффект (резонансной) продувки цилиндра, причём обеспечение такого эффекта является одной из основных задач правильно спроектированного выпускного коллектора. Выполнение всех первичных выпускных трубопроводов имеющими одинаковую длину позволяет придать этому эффекту большую регулярность. В результате подсос воздуха в цилиндры становится более равномерным и дополнительно усиливается за счёт резонансных эффектов. При этом газообмен в цилиндре и в частности удаление из него ОГ и впуск воздуха осуществляется не только за счёт хода поршня, но и за счёт описанного выше эффекта продувки цилиндра. При разработке «настроенных» выпускных коллекторов для «Субару» нередко забывают о том, что длина выпускного канала цилиндра фактически также относится к выпускному трубопроводу, и учитывать нужно именно суммарную длину трубопровода и этого канала. Вопрос усложняется тем, что различные выпускные каналы автомобилей «Субару» имеют различную длину. Нежелание учитывать эти различия приводит к невозможности в полной мере воспользоваться преимуществами, которые способен обеспечить правильно спроектированный «настроенный выпуск».

Ниже схематично показаны выпускные каналы цилиндров «Субару». Как видно на рисунке, каналы А длиннее каналов Б.

Как становится очевидно из вышесказанного, основные затраты времени при испытаниях бывают связаны с правильным подбором длины первичных выпускных трубопроводов, в ходе которого приходится учитывать длину выпускных каналов цилиндров.

Конструкция коллектора

В выпускном коллекторе первичные выпускные трубопроводы объединяются в основной трубопровод выхлопной системы. Известны самые различные варианты выполнения соответствующего участка коллектора – от простых и недорогих в изготовлении до весьма сложных и затратных. Простейший способ объединения первичных выпускных трубопроводов показан в левой части приведённой ниже иллюстрации.

В данном варианте в центре, между сходящимися трубопроводами, образуется застойная область, в которой возникают сильные затормаживающие поток ОГ завихрения. Отсутствие такой области является основным преимуществом более совершенных коллекторов. Вариант выполнения такого коллектора показан в правой части приведённой выше иллюстрации. Как видно на рисунке, в данном варианте первичные выпускные трубопроводы сходятся воедино без образования застойной области. Данный вариант сравнительно недорог в изготовлении и обеспечивает неплохие результаты. При этом эффект достигается просто за счёт соответствующей деформации сходящихся концевых участков труб.

Однако наиболее совершенным техническим решением является показанный ниже коллектор, выполненный в виде отдельной детали, в которую вставляются концевые участки первичных выпускных трубопроводов. Показанный ниже образец производства фирмы «Burns Stainless» является одним из лучших доступных в продаже выпускных коллекторов. Обратите внимание на то, как выполнен участок слияния потоков ОГ, поступающих из первичных выпускных трубопроводов.

Длина коллектора

Длина коллектора также влияет на мощностную характеристику двигателя. Обычно с увеличением длины коллектора пик мощности смещается в сторону высоких оборотов. В любом случае, длина коллектора должна быть достаточной для сведения к минимуму завихрений, возникающих в ходе взаимного слияния потоков ОГ, поступающих из первичных выпускных трубопроводов. Недостаточная длина соответствующего участка коллектора приводит к возникновению завихрений, способных серьёзно затормозить поток ОГ. Однако у коллектора существует и другой важный параметр, подбор которого невозможен без обширных испытаний. Этим параметром является внутренний объём коллектора, от которого тоже во многом зависит мощностная характеристика двигателя.

Ширина коллектора

Ширина (или внутренний объём) коллектора в основном определяет характер взаимодействий, возникающих между отдельными выхлопами или импульсами выхлопа. Слишком большая ширина коллектора препятствует возникновению между такими импульсами желательных взаимодействий, приводящих к возникновению описанного ранее эффекта резонансной продувки цилиндра, а также приводит к снижению скорости истечения ОГ. Недостаточная ширина коллектора, напротив, способна затруднить свободное истечение ОГ за счёт создания слишком высокого противодавления. «Правильная» в каждом конкретном случае ширина коллектора определяется лишь путём испытаний.

Углы конусности

Очевидно, что чем меньше угол конусности выпускного коллектора, и в общем случае чем плавнее любое изменение проходного сечения любого элемента выхлопной системы, тем лучше. Однако именно в выпускном коллекторе угол конусности, под которым проходное сечение этого коллектора переходит в проходное сечение основного трубопровода выхлопной системы, является одним из важнейших факторов. Любое резкое сужение выпускного коллектора способно сильно помешать процессу свободного истечения ОГ.

Проходной диаметр каждого из участков, на которых первичные выпускные трубопроводы вливаются в главное внутреннее пространство выпускного коллектора, должен как можно точнее соответствовать диаметру выпускных каналов цилиндров. В противном случае в выпускном коллекторе неизбежно возникнут дополнительные нежелательные завихрения. Нельзя забывать, что завихрения в выпускном коллекторе оказывают большее негативное воздействие на протекание потока ОГ, чем завихрения в любой иной части выхлопной системы. По данным многих заслуживающих доверия специалистов, уменьшить возникающие в коллекторе завихрения можно путём ступенчатого изменения площади проходного сечения выпускного коллектора. Однако это приводит к усложнению и удорожанию коллектора.

Кроме того, существенные ограничения на конструкцию коллектора накладывает компоновка подкапотного пространства автомобиля. То, что выпускные каналы цилиндров двигателей «Субару» расположены с противоположных сторон двигателя, существенно усложняет задачу конструирования выпускного коллектора для этих автомобилей. Для двигателей с горизонтальным оппозитным расположением цилиндров сложность изменения длины первичного выпускного трубопровода сравнима со сложностью изготовления нового выпускного коллектора, вследствие чего при испытаниях процесс определения правильной длины этих трубопроводов занимает очень много времени. Сделать так, чтобы длина всех первичных выпускных трубопроводов с учётом относящихся к ним выпускных каналов цилиндров была строго одинакова, а сами эти трубопроводы при этом приемлемым образом вписались в компоновку подкапотного пространства, является непростой задачей, а ещё более сложная задача тонкой настройки выпуска для оптимизации эффекта резонансной продувки цилиндров, для чего длины трубопроводов индивидуально модифицируются с шагом 0,5 – 1 дюйм, и вовсе требует от конструктора большого таланта.

Каталитические нейтрализаторы ОГ

Наличие собственного динамометрического стенда позволяет проводить сравнительное тестировании оснащённых и не оснащённых каталитическими нейтрализаторами ОГ выхлопных систем «атмосферных» автомобильных двигателей. По результатам испытаний можно утверждать, что отсутствие каталитического нейтрализатора не способно принести существенного выигрыша по сравнению с присутствием в выхлопной системе правильно спроектированного каталитического нейтрализатора ОГ.

ажным фактором, определяющим, насколько серьёзное препятствие на пути потока ОГ будет представлять собой каталитический нейтрализатор, является угол конусности его корпуса. Поскольку проходное сечение корпуса каталитического нейтрализатора существенно превышает проходное сечение входящих и выходящих из этого корпуса выхлопных трубопроводов, слишком резкое изменение этого проходного сечения способно существенно затормозить поток ОГ.

Сказанное в равной степени относится к каталитическим нейтрализаторам как турбированных двигателей, так и «атмосферников». Кроме того, необходимо обеспечить прохождение поступающих вовнутрь корпуса каталитического нейтрализатора ОГ сквозь всё рабочее сечение активных элементов этого нейтрализатора. В случае, когда потоком ОГ используется не вся площадь сечения этих активных элементов, каталитический нейтрализатор ОГ не будет работать с должной эффективностью. По названной причине плавное расширение корпуса каталитического нейтрализатора на входе даже важнее плавного сужения этого корпуса на выходе.

Часть выхлопной системы, расположенная после каталитического нейтрализатора по ходу потока ОГ

Разработать «правильную» часть выхлопной системы, расположенную после каталитического нейтрализатора по ходу потока ОГ, проще, чем разработать «правильный» выпускной коллектор. Основной задачей остаётся поддержание максимально возможной скорости истечения ОГ. Слишком широкая труба приводит к снижению скорости потока ОГ и потере части крутящего момента на малых оборотах. Слишком узкая труба приводит к снижению максимальной мощности (мощности на высоких оборотах). Оптимальное в каждом конкретном случае решение является, как всегда, результатом компромисса. Важно обеспечить гладкую внутреннюю поверхность трубопроводов и правильно использовать технологию гибки труб. Глушитель должен создавать как можно меньшее сопротивление потоку ОГ и одновременно с этим в достаточной мере снижать шумность выхлопа. Собственно говоря, все «хитрости» конструирования задней части выхлопной системы ограничиваются вышесказанным. Очевидно, что эта часть выхлопной системы действительно заметно проще выпускного коллектора.

Дата публикации: 25.07.2007

Выхлопные системы. Часть2. — DRIVE2

Это перевод, мной, не профессионалом, отрывка из книги Performance Tuning in Theory & Practice автором которой является A. Graham Bell.

После того, как длина первичной трубы была определена, мы можем разработать внутренний диаметр по формуле

Где CC= объём цилиндра в куб. см.P = первичная длинна в дюймах

Пауки дорожных машин, как правило, работают достаточно хорошо, если трубы того же диаметра, что и выпускной канал. Гоночные двигатели требуют большую точность, если мы хотим достичь высочайшей производительности. Результат расчёта по формуле, необходимо привести к соответствию выхлопным трубам, которые доступны в продаже.

Если система 4 — 2 — 1 является предпочтительнее, мы используем ту же формулу или таблицу, определим общую длину (Р) коллекторных труб, которые будут объединены, длина первичной (P1) плюс длина вторичной трубы (Р2). Внутренний диаметр может быть определен для четырех первичных трубопроводов (P1) с помощью той же формулы.

После того, как внутренний диаметр первичных трубопроводов вычисляется, мы можем проработать внутренний диаметр в двух вторичных трубах (P2) по формуле:

Где ID = рассчитанный внутренний диаметр первичных трубопроводов (P1).Длина первичной трубы (Р1) всегда должен быть 380мм. Длину вторичной трубы (P2) можно найти простым вычитанием: Р2 = Р-Р1.

Расчеты для системы 4-2-1 также используются для определения размеров труб для коллекторов BMC типа с длительной центральной трубой. Разница лишь в том, что центральная ветвь того же диаметра, как на вторичном трубе (IDS) для полной длины (P). В теории все выглядит очень просто, для коллекторов нужны трубы точно нужной длины и диаметра. К сожалению, в практике часто это не работает. Паук, построенный в соответствии с изложенными формулами, будет работать достаточно хорошо, и обеспечить хорошую основу для дальнейших экспериментов на стенде или на трассе. Однако из-за применения разных типов кулачков распредвалов, впускных коллекторов, портирования головки блока цилиндров и т.д., длина и диаметр труб должны быть индивидуально подобраны для получения большего результата в вашем двигателе. Если вы обнаружите, что максимальный крутящий момент двигателя находится на 7000 оборотах в минуту, а вы хотите максимальный крутящий момент при 6000 оборотах в минуту, то уменьшите диаметр трубы. Как правило, уменьшение диаметра первичной трубы на 3мм сместит пик крутящего момента вниз на 500-600 оборотов в минуту для мощных двигателей, и 650-800 оборотов в минуту для двигателей объёмом меньше 2 литров. И наоборот увеличение диаметра будет повышать частоту вращения двигателя, при которой развивается максимальный крутящий момент, близко к тем же пропорциям, что при уменьшении.Длинна трубы изменяет добротность кривой мощности двигателя, вокруг точки максимального момента. Добавление длины к первичным трубам улучшит тягу малых и средних оборотов, с соответствующим снижением мощности на максимальных. Более короткие первичные трубы дадут прирост на высокой скорости вращения, за счет ухудшения средних. Таким способом можно выбрать оптимальную настройку, в сторону пика крутящего момента или в сторону максимальной мощности.Картинка показывает как мы соединили трубы, собрав в коллектор. Трубы должны заканчиваются резко в противном случае волны давления будут протекать дальше в выхлопную трубу и все наши расчеты, чтобы получить негативную волну обратно во время открытия выпускной клапан, будут неверны.

Заводские коллектора оставляют желать лучшего, но так как они, как правило, используется только на уличных машинах, проблема не так серьезна. Некоторые американские конкурентные системы, которые я видел использовали небольшой аэродинамический профиль в форме пирамиды на стыке труб. Это устройство трюк или оно работает с вытекающей из этого ошибкой.

Я нашел лучший угол конуса, он должен быть 7-8гр. (14-16 гр в сумме.); конечно, 9-10гр. должны быть рассмотрены как максимальная конуснасть, вообще я нашел этот угол, чтобы вызвать небольшую потерю мощности.По следующей формуле мы можем разработать необходимую длину для коллектора:

ID2 = диаметр впускного коллектораID3 = диаметр розетки коллектораCot A= котангенс угла конуса (7 = 8,144, 8 = 7,115, 9 = 6,314, 10 = 5,671)

На самом деле, мы не можем найти размер коллектора, пока мы не рассчитаем размер выхлопной трубы. Суммарная длина схождения и оконечной трубы всегда должна быть такой же длины, как основной трубы, и даже на 76мм длиннее (р + 3in). Мы рассчитываем оконечную трубу согласно внутреннему диаметру, по формуле:

Где CC = объем цилиндра в смP = Первичный длина в дюймах

Если выхлопная труба в два или три размера P + 3дюйма настоящее время используется, информация из ID3 кулачок быть уменьшена, если это необходимо. После того, как мы определили, диаметр выхлопной трубы (ID3), мы можем вычислить длину коллектора (CL) фактическая длина выхлопной трубы может быть найдена путем вычитания, используя формулу TL = (P + 3) — CL.

Доводка выхлопной системы атмосферных ДВС

Особенности строения и доводки выхлопной системы

Выхлопные системы имеют единое предназначение. Они выводят в атмосферу отработанные газы максимально быстро и эффективно, одновременно создавая противодействие давлению. Это единственное сходство систем, предназначенных для разных типов двигателей (турбированные или атмосферные, без турбокомпрессора) и моделей автомобилей. В остальном они различаются. Основная масса отличий приходится на головную часть и выпускной коллектор, в частности.

Конструкционный элемент: выпускной коллектор

Именно выпускной коллектор оказывает самое серьезное воздействие на мощность силового агрегата. При его создании учитывается целый список параметров. Один из них — конструкция ответственного участка, на котором происходит соединение потоков отработанных газов.

Для силового агрегата на 4 цилиндра существует, например, варианта конструкции:

• 4 первичных трубопровода сходятся в одной точке, при этом импульсы выхлопов при взаимодействии позволяют получить максимальный крутящий момент; • сначала сходятся два и два первичных выпускных трубопровода отдельно, а затем полученные два объединяются между собой. Диаметр и длина первичных выпускных трубопроводов Очевиден тот факт, что уменьшение объема трубопроводов дает эффект ускорения потока газов. Следовательно, при больших объемах отводимых продуктов выхлопа необходимо оснащать ТС трубами первичного выпуска с большим диаметром. При этом объемы выхлопа находятся в прямой зависимости от: • рабочего объема двигателя (диаметр первичного выпускного трубопровода неизменно ориентирован на объем цилиндров); • частоты вращения вала (чем она больше, тем объемнее продукт выхлопа, выпускаемый из цилиндра в определенный момент времени, тем больше требуется диаметр трубопровода);

• нагрузки на силовой агрегат (объем газов растет с повышением нагрузки).

При конструировании моделей автомобилей производитель всегда ориентируется на выбор оптимального диаметра первичных выпускных трубопроводов, балансируя между потребностью увеличить одновременно и скорость выброса, и пропускную способность трубопровода.

Существует допустимый и разумный предел увеличения диаметра трубы, поскольку после его достижения не удастся обеспечить нужную скорость потока. Результатом превышения диаметра станет снижение крутящего момента. При значительном несоответствии резко снижается развиваемая силовым агрегатом мощность. Только оптимизация параметра скорости и пропускной способности служит гарантией получения:

• лучшего крутящего момента на малых оборотах; • необходимой тяги на повышенных оборотах.

Длина первичных выпускных трубопроводов – не менее значимый параметр. Она также влияет на мощность двигателя. Увеличение длины ведет к улучшению показателей тяги на низких оборотах, а уменьшение соответственно улучшит показатели на высоких.

Данная зависимость легко объяснима: она влияет на время прохода по трубам ударной волны, возникающей в первичном трубопроводе при открытии клапана, от выпущенных из цилиндров отработанных газов. Волна отражается, пройдя по трубопроводу, и частично возвращается в цилиндр, способствуя:

• выводу из него отработанных газов; • всасыванию в цилиндр атмосферного воздуха.

Рост объема воздуха и топлива в цилиндре позволяет двигателю развить большую мощность. Эффект продувки цилиндра, который называют резонансным, — одна из главных задач создания выпускного коллектора. Над совершенствованием ее решения трудятся ведущие инженеры автоконцернов. Если первичные выпускные трубопроводы выполнены в одной длине, эффект приобретает регулярность. Основные затраты времени специалистов связаны с оптимизацией подбора длины первичных выпускных трубопроводов.

Конструкционный элемент: коллектор и его параметры

Первичные выпускные трубопроводы объединяются в выпускном коллекторе, который является одним из ведущих элементов всей выхлопной системы. Модели коллекторов разнообразны. Цена зависит от сложности конструкции.

При простейшей схеме между сходящимися трубопроводами в центре конструкции образуется застойная область. Это чревато появлением сильных тормозящих потоков отработанных газов, завихрений. В более дорогостоящих моделях такой области нет. В совершенных коллекторах первичные выпускные трубопроводы объединяются особым образом, что позволяет избежать появления застойной области. Эффект достигается за счёт деформации сходящихся концевых участков трубопроводов. Самый совершенный коллектор имеет вид отдельной детали с вставленными в нее концами первичных трубопроводов.

Очевидно, что длина коллектора влияет на получаемую мощность двигателя. Чем она больше, тем более смещен пик мощности в сторону высоких оборотов. При выборе длины коллектора инженеры ориентируются на минимизацию образующихся при слиянии потоков газов завихрений.

Мощность также зависит от внутреннего объема коллектора, его ширины. Она определяет уровень взаимодействий между отдельными выхлопами или импульсами выхлопа. Правильная ширина для каждой модели ТС определяется путем проведения испытаний.

Еще один важный параметр — углы конусности. Чем они меньше, тем более плавными будут изменения проходного сечения любого элемента выхлопной системы. Особенно важен правильно подобранный угол конусности в выпускном коллекторе. Любое резкое его сужение негативно влияет на свободное движение отработанных газов.

Не менее существенно на конструкцию коллектора влияет подкапотное пространство модели. В некоторых из них особенности расположения двигателя существенно усложняют конструирование выпускного коллектора и оптимизацию его параметров.

Каталитические нейтрализаторы отработанных газов и все, что находится за ними

Как показывают тестирования, отсутствие каталитического нейтрализатора не может существенно положительно или отрицательно повлиять на работу выхлопной системы. Если же он стоит, то важно, чтобы он был правильно спроектирован и грамотно подобран. Учитывается угол конусности его корпуса, который следует учитывать и для турбированных, и для атмосферных двигателей.

Плавное расширение корпуса каталитического нейтрализатора на входе важнее плавного сужения этого корпуса на выходе. Если поток отработанных газов использует не всю площадь сечения активных элементов системы, каталитический нейтрализатор не работает с должной эффективностью.

Все, что находится за нейтрализатором, выполняет задачи поддержания максимально возможной скорости истечения потока отработанных газов. Слишком широкая труба – это снижению скорости, потеря части крутящего момента на малых оборотах. Слишком узкая – обратный эффект, т.е. снижение мощности на высоких оборотах.

Если при ремонте выхлопной системы вы стремитесь добиться оптимальных и наиболее эффективных результатов, обратитесь в компанию SPB-GLUSHAC.RU. Опытные мастера нашего автосервиса по ремонту выхлопных систем в СПб добиваются самых лучших результатов, достигают нужного баланса всех элементов системы и сохранения первоначальных эксплуатационных характеристик вашего автомобиля.

Мы приглашаем воспользоваться нашими услугами владельцев автотранспорта в Санкт-Петербурге, Приморском районе, Выборгском районе, Красногвардейском районе и других районах Ленобласти. Отремонтированный глушитель будет создавать минимальное сопротивление потоку отработанных газов и снижать шум выхлопа, не в ущерб мощности автомобиля.

Выхлопной трубопровод. Основная банка — Mercedes-Benz G-class, 3.0 л., 1985 года на DRIVE2

1. Выхлопная система.2. Приемная труба3. Средний глушитель4. Средняя труба

После вскрытия и осмотра внутренностей стандартного глушителя, выяснилось, что все в идеальном состоянии, нет ни ржавчины, ни горелых деталей, за исключением самой банки глушителя.От изготовления или покупки нового глушителя решил отказаться, занялся модернизацией имеющегося глушителя и заменой корпуса банки. Основной задачей модернизации ставилось, получить тихий и не создающий препятствие выхлопу глушитель.Определил «узкие» места:— сетки на концах внутренних труб— малый диаметр, 35 мм, перепускной трубы между камерами резонатора— малый диаметр выпускной трубы, 50 мм, в последнюю резонаторную камеру.и учитывая новый диаметр выхлопной трубы и наличие турбины на моторе, сделал следующие изменения:— удалил сетки на концах внутренних труб.— увеличил выходные отверстия на основной приемной и выпускной трубе— установил «конус рассекатель» на выходе приемной(впускной) трубы в резонаторной камере— добавил дополнительную перепускную трубу, доведя сечение перепускной трубы до 70 мм— добавил выпускную трубу до последней резонаторной камеры, доведя сечения до 70 мм— увеличил, до 63 мм, приемную трубу основного глушителя— заменил торцевые заглушки и корпус банки глушителя— последнюю резонаторную камеру заполнил каменной ватой, как это сделано на глушителях новых моделей MB.После примерки на авто, выяснилось, что глушитель длинноват, почти касается заднего моста, в итоге последняя камера резонатора была уделена. Заваривать корпус банки пока не стал, возможно добавлю последнюю камеру но сделаю ее короче на 10 см, и набью наполнитель.Надеюсь, после сделанных изменений, глушитель будет «тихим», не создаст препятствие току выхлопных газов, и не будет «душить» двигатель.После запуска двигателя, сделаю замеры по звуку до установки глушителя и после.

Как всегда комментарии и предложения приветствуются.

Рис 1. После вскрытия основная банка.

Рис 2. После вскрытия основная банка.

Рис 3. После вскрытия основная банка.

Рис 4. После вскрытия основная банка. Размеры камер

Рис 5. После вскрытия основная банка. Размеры камер

Добавлена перфорация на наружной входной трубе.

Удалены сетки и добавлена перепускная труба доведя общее сечения перепуска до 70 мм

Дополнительная перепускная труба

Добавлена доп. выпускная труба, доведя общее сечения выпуска до 75 мм

Доп. выпускная труба

Новая торцевая заглушка банки глушителя

Торцевая заглушка в сборе

Впускной патрубок, диаметр 63 мм.

Примерка и Сборка глушителя на авто

Примерка и сборка основного элемента глушителя

Примерка выпускной трубы, последняя камера резонатора удалена.

Выпускная труба, вид справа

Выпускная труба, вид слева

Выпускная труба, вид сзади

Принцип работы глушителя. Рисовал для понимания процесса.

Запуск двигателя

Выхлопная система — теория

Едва ли не самая популярная тема из связанных с тюнингом автомобилей, — выпускные системы двигателей. По крайней мере, чаще обсуждают вопросы о выхлопе, чем о клапанах, головках, коленвалах и прочих составляющих настройки двигателей. Причем диапазон вопросов примерно следующий: от “скажите, а как применить формулу для вычисления резонансной частоты (приводится соотношение для резонатора Гельмгольца) к четырехдроссельному впуску?” до “мне друг подарил “паук” со своего спортивного “гольфа”. Сколько прибавится лошадиных сил, если я его установлю на свой автомобиль?” или “я строю себе мотор. Какой глушитель купить, чтобы было больше мощности?”, или “сколько лошадиных сил прибавится, если я вместо катализатора установлю резонатор?”. Причем во всех вопросах красной линией проходит добавочная мощность.

ПОЧЕМУ ВЫПУСКНОЙ ТРАКТ ВЛИЯЕТ НА РАБОТУ МОТОРА.

Если мы все дружно понимаем, что мощность есть произведение вращающего момента на скорость вращения коленчатого вала (обороты), то понятно, что мощность — зависимая от скорости величина. Рассмотрим чисто теоретический двигатель (не важно, электрический он, внутреннего сгорания или турбореактивный), который отдает постоянный вращающий момент на оборотах от 0 до бесконечности, (кривая 2 на рис. ниже) Тогда его мощность будет линейно расти с оборотами от 0 до бесконечности (кривая 1 на рис. ниже). Предмет нашего интереса — четырехтактные многоцилиндровые двигатели внутреннего сгорания в силу конструкции и процессов, в них происходящих, имеют рост момента с увеличением оборотов до его максимальной величины, и с дальнейшим увеличением оборотов момент снова падает (кривая 3 на рис. ниже). Тогда и мощность будет иметь аналогичный вид (кривая 4 на рис. ниже).

Важным обстоятельством для понимания функций выпускной системы является связь вращающего момента с коэффициентом наполнения цилиндра. Давайте себе представим процесс, происходящий в цилиндре в фазе впуска. Предположим, коленчатый вал двигателя вращается настолько медленно, что мы можем наблюдать движение топливовоздушной смеси в цилиндре и в любой момент времени давление во впускном трубопроводе и цилиндре успевает выравниваться. Предположим, что в верхней мертвой точке (ВМТ) давление в камере сгорания равно атмосферному. Тогда при движении поршня из ВМТ в нижнюю мертвую точку (НМТ) в цилиндр попадет количество свежей топливовоздушной смеси, точно равное объему цилиндра. Говорят, что в таком случае коэффициент наполнения равен единице. Предположим, что в вышеописанном процессе мы закроем впускной клапан в положении поршня, соответствующем 80% его хода. Тогда мы наполним цилиндр только на 80% его объема и масса заряда составит соответственно 80%. Коэффициент наполнения в таком случае будет 0,8. Другой случай. Пусть некоторым образом нам удалось во впускном коллекторе создать давление на 20% выше атмосферного. Тогда в фазе впуска мы сможем наполнить цилиндр на 120% по массе заряда, что будет соответствовать коэффициенту наполнения 1,2. Так, теперь самое главное. Вращающий момент двигателя совершенно точно на кривой момента соответствует коэффициенту наполнения цилиндра. То есть вращающий момент там выше, где коэффициент наполнения выше, и ровно во столько же раз, если, конечно, мы не учитываем внутренние потери в двигателе, которые растут со скоростью вращения. Из этого понятно, что o кривую момента и, соответственно, кривую мощности определяет зависимость коэффициента наполнения от оборотов. У нас есть возможность влиять в некоторых пределах на зависимость коэффициента наполнения от скорости вращения двигателя с помощью изменения фаз газораспределения. В общем случае, не вдаваясь в подробности, можно сказать, что чем шире фазы и чем в более раннюю по отношению к коленчатому валу область мы их сдвигаем, тем на больших оборотах будет достигнут максимум вращающего момента. Абсолютное значение максимального момента при этом будет немного меньше, чем с более узкими фазами (кривая 5 на рис. выше). Существенное значение имеет так называемая фаза перекрытия. Дело в том, что при высокой скорости вращения определенное влияние оказывает инерция газов в двигателе. Для лучшего наполнения в конце фазы выпуска выпускной клапан надо закрывать несколько позже ВМТ, а впускной открывать намного раньше ВМТ. Тогда у двигателя появляется состояние, когда в районе ВМТ при минимальном объеме над поршнем оба клапана открыты и впускной коллектор сообщается с выпускным через камеру сгорания. Это очень важное состояние в смысле влияния выпускной системы на работу двигателя. Теперь, я думаю, пора рассмотреть функции выпускной системы. Сразу скажу, что в выпускной системе присутствует три процесса. Первый — сдемпфированное в той или иной степени истечение газов по трубам. Второй — гашение акустических волн с целью уменьшения шума. И третий — распространение ударных волн в газовой среде. Любой из названных процессов мы будем рассматривать с позиции его влияния на коэффициент наполнения. Строго говоря, нас интересует давление в коллекторе у выпускного клапана в момент его открытия. Понятно, что чем меньшее давление, а лучше даже ниже атмосферного, удастся получить, тем больше будет перепад давления от впускного коллектора к выпускному, тем больший заряд получит цилиндр в фазе впуска. Начнем с достаточно очевидных вещей. Выпускная труба служит для отвода выхлопных газов за пределы кузова автомобиля. Совершенно понятно, что она не должна на оказывать существенного сопротивления потоку. Если по какой-то причине в выпускной трубе появился посторонний предмет, закрывающий поток газов (например, соседи пошутили и засунули в выхлопную трубу картошку), то давление в выпускной трубе не будет успевать падать, и в момент открытия выпускного клапана давление в коллекторе будет противодействовать очистке цилиндра. Коэффициент наполнения упадет, так как оставшееся большое количество отработанных газов не позволит наполнить цилиндры в прежней степени свежей смесью. Соответственно, двигатель не сможет вырабатывать прежний вращающий момент. Весьма важно понимать, что размеры трубы и конструкция глушителей шума в серийном автомобиле достаточно хорошо соответствуют количеству отработанных газов, вырабатываемых двигателем в единицу времени. Как только серийный двигатель подвергся изменениям с целью увеличения мощности (будь то увеличение рабочего объема или увеличение момента на высоких оборотах), сразу увеличивается расход газа через выпускную трубу и следует ответить на вопрос, а не создает ли теперь в новых условиях избыточного сопротивления серийная выпускная система. Так что из рассмотрения первого процесса, обозначенного нами, следует сделать вывод о достаточности размеров труб. Совершенно понятно, что после некоторого разумного размера увеличивать сечение труб для конкретного двигателя бессмысленно, улучшения не будет. А отвечая на вопрос, где же мощность, можно сказать, что тут главное не потерять, прибрести же ничего невозможно. Из практики могу сказать, что для двигателя объемом 1600 куб.см, имеющего хороший вращающий момент до 8000 об./мин., вполне достаточно трубы диаметром 52 мм.

Как только мы говорим о сопротивлении в выпускной системе, необходимо упомянуть о таком важном элементе, как глушитель шума. Так как в любом случае глушитель создает сопротивление потоку, то можно сказать, что лучший глушитель — полное его отсутствие. К сожалению, для дорожного автомобиля это могут себе позволить только отчаянные хамы. Борьба с шумом — это, как ни верти, забота о нашем с вами здоровье. Не только в повседневной жизни, но и в автоспорте действуют ограничения на шум, производимый двигателем автомобиля. Должен сказать, что в большинстве классов спортивных автомобилей шум выпуска ограничен уровнем 100 дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать техтребованиям и не сможет быть допущенным к соревнованиям. Поэтому выбор глушителя — всегда компромисс между его способностью поглощать звук и низким сопротивлением потоку.

КАКИМ ОБРАЗОМ ЗВУК ГАСИТСЯ В ГЛУШИТЕЛЕ.

Акустические волны (шум) несут в себе энергию, которая возбуждает наш слух. Задача глушителя состоит в том, чтобы энергию колебаний перевести в тепловую. По способу работы глушители надо разделить на четыре группы. Это ограничители, отражатели, резонаторы и поглотители.

ОГРАНИЧИТЕЛЬ

Принцип его работы прост. В корпусе глушителя имеется существенное заужение диаметра трубы некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Продавливая через сопротивление звук, мы колебания сглаживаем объемом. Энергия рассеивается в дросселе, нагревая газ. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание. Но тем больше сопротивление потоку. Наверное, плохой глушитель. Однако в качестве предварительного глушителя в системе — довольно распространенная конструкция.

ОТРАЖАТЕЛЬ

В корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. Известно, что при каждом отражении часть энергии теряется, тратится на нагрев зеркала. Если устроить для звука целый лабиринт из зеркал, то в конце концов мы рассеем почти всю энергию и наружу выйдет весьма ослабленный звук. По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, однако так как в недрах корпуса мы заставим также газовый поток менять направление, то все равно создадим некоторое сопротивление выхлопным газам. Такая конструкция чаще всего применяется в оконечных глушителях стандартных систем.

РЕЗОНАТОР

Глушители резонаторного типа используют замкнутые полости, расположенные рядом с трубопроводом и соединенные с ним рядом отверстий. Часто в одном корпусе бывает два неравных объема, разделенных глухой перегородкой. Каждое отверстие месте с замкнутой полостью является резонатором, возбуждающим колебания собственной частоты. Условия распространения резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии. Такие глушители эффективно в малых размерах гасят низкие частоты и применяются в основном в качестве предварительных, первых в выпускных системах. Существенного сопротивления потоку не оказываю, т.к. сечение не уменьшают.

ПОГЛОТИТЕЛЬ

Способ работы поглотителей заключается в поглощении акустических волн неким пористым материалом. Если мы звук направим, например, в стекловату, то он вызовет колебания волокон ваты и трение волокон друг о друга. Таким образом, звуковые колебания будут преобразованы в тепло. Поглотители позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и даже без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала. Такой глушитель будет иметь минимально возможное сопротивление потоку, однако и хуже всего снижает шум. Надо сказать, что серийные выпускные системы используют в большинстве случаев различные комбинации всех приведенных способов. Глушителей в системе бывает два, а иногда и больше. Следует обратить внимание на особенность конструкций глушителей, которая в случае самостоятельного изготовления не позволяет достичь эффективного снижения шума, хотя кажется, что все сделано правильно. Если внутри глушителя у его стенок нет поглощающего материала, то источником звука становятся стенки корпуса. Многие замечали, что некоторые глушители имеют снаружи асбестовую обкладку, прижатую дополнительным листом фальшкорпуса. Это и есть та мера, которая позволит ограничить излучение через стенки и предотвратить нагрев соседних элементов автомобиля. Такая мера характерна для глушителей первого и второго типов.

Есть еще одно обстоятельство, которое нельзя обойти вниманием в статье о тюнинге. Это тембр звука. Часто пожелания клиента к тюнинговой компании состоят в том, чтобы посредством замены глушителя добиться “благородного” звучания мотора. Надо заметить, что если требования к выпускной системе не распространяются дальше изменения “голоса”, то задача существенно упрощается. Можно сказать, что, вероятнее всего, для таких целей больше подходит глушитель поглотительного типа. Его объем, количество набивки, а также сама набивка определяют спектр частот, интенсивно поглощаемых. Практически любая мягкая набивка поглощает в большей степени высокочастотную составляющую, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом, варьируя размеры, содержимое и набор элементов, можно подобрать тембр звучания.

ГДЕ «СПРЯТАНА» ДОПОЛНИТЕЛЬНАЯ МОЩНОСТЬ?

Как мы уже уяснили, коэффициент наполнения, вращающий момент и мощность зависят от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Место нам уже хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт разрежения может создать полезную для нас работу, сильно зависит от скорости вращения двигателя. Да и весь период фазы выпуска нужно разбить на две составляющие. Первая — когда клапан только что открылся. Эта часть характеризуется большим перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней помощи после рабочего хода покидают цилиндр. Если в этот момент волна разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец выпуска более интересен. Давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Помните? Такое состояние (фаза перекрытия) характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт разрежения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет своего максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре? Такой вот процесс может вполне происходить в выпускной системе ДВС. Осталась сущая мелочь. Нужно такой процесс организовать. Первым необходимым условием дозарядки цилиндров с помощью ударных волн надо назвать существование достаточно широкой фазы перекрытия. Строго говоря, нас интересует не столько сама ширина фазы как геометрическая величина, сколько интервал времени, когда оба клапана открыты. Без особых разъяснений понятно, что при постоянной фазе с увеличением скорости вращения время уменьшается. Из этого автоматически следует, что при настройке выпускной системы на определенные обороты одним из варьируемых параметров будет ширина фазы перекрытия. Чем выше обороты настройки, тем шире нужна фаза. Из практики можно сказать, что фаза перекрытия менее 70 градусов не позволит иметь заметный эффект, а значение для настроенных на обычные 6000 об/мин систем составляет 80 — 90 градусов.

Второе условие уже определили. Это необходимость вернуть к выпускному клапану ударную волну. Причем в многоцилиндровых двигателях вовсе необязательно возвращать ее в тот цилиндр, который ее сгенерировал. Более того, выгодно возвращать ее, а точнее, использовать в следующем по порядку работы цилиндре. Дело в том, что скорость распространения ударных волн в выпускных трубах — есть скорость звука. Для того чтобы возвратить ударную волну к выпускному клапану того же цилиндра, предположим, на скорости вращения 6000 об/мин, надо расположить отражатель на расстоянии примерно 3,3 метра. Путь, который пройдет ударная волна за время двух оборотов коленчатого вала при этой частоте, составляет 6,6 метра. Это путь до отражателя и обратно. Отражателем может служить, например, резкое многократное увеличение площади трубы. Лучший вариант — срез трубы в атмосферу. Или, наоборот, уменьшение сечения в виде конуса, сопла Лаваля или, совсем грубо, в виде шайбы. Однако мы договорились, что различные элементы, уменьшающие сечение, нам неинтересны. Таким образом, настроенная на 6000 об/мин выпускная система предполагаемой конструкции для, например, четырехцилиндрового двигателя будет выглядеть как четыре трубы, отходящие от выпускных окон каждого цилиндра, желательно прямые, длиной 3,3 метра каждая. У такой конструкции есть целый ряд существенных недостатков. Во-первых, маловероятно, что под кузовом, например, Гольфа длиной 4 метра или даже Ауди А6 длиной 4,8 метра возможно разместить такую систему. Опять же, глушитель все-таки нужен. Тогда мы должны концы четырех труб ввести в банку достаточно большого объема, с близкими к открытой атмосфере акустическими характеристиками. Из этой банки надо вывести газоотводную трубу, которую необходимо оснастить глушителем.

Короче, такого типа система для автомобиля не подходит. Хотя справедливости ради надо сказать, что на двухтактных четырехцилиндровых мотоциклетных моторах для кольцевых гонок она применяется. Для двухтактного мотора, работающего на частоте выше 12 000 об/мин, длина труб сокращается более чем в четыре раза и составляет примерно 0,7 метра, что вполне разумно даже для мотоцикла. Вернемся к нашим автомобильным двигателям. Сократить геометрические размеры выпускной системы, настроенной на те же 6000 об/мин, вполне можно, если мы будем использовать ударную волну следующим по порядку работы цилиндром. Фаза выпуска в нем наступит для трехцилиндрового мотора через 240 градусов поворота коленчатого вала, для четырехцилиндрового — через 180 градусов, для шестицилиндрового — через 120 и для восьмицилиндрового — через 90. Соответственно, интервал времени, а следовательно, и длина отводящей от выпускного окна трубы пропорционально уменьшается и для, например, четырехцилиндрового двигателя сократится в четыре раза, что составит 0,82 метра. Стандартное в таком случае решение — всем известный и желанный “паук”. Конструкция его проста. Четыре так называемые первичные трубы, отводящие газы от цилиндров, плавно изгибаясь и приближаясь друг к другу под небольшим углом, соединяются в одну вторичную трубу, имеющую площадь сечения в два-три раза больше, чем одна первичная. Длина от выпускных клапанов до места соединения нам уже известна — для 6000 об/мин примерно 820 мм. Работа такого “паука” состоит в том, что следующий за ударной волной скачок разрежения, достигая места соединения всех труб, начинает распространяться в обратном направлении в остальные три трубы. В следующем по порядку работы цилиндре в фазе выпуска скачок разрежения выполнит нужную для нас работу. Тут надо сказать, что существенное влияние на работу выпускной системы оказывает также длина вторичной трубы. Если конец вторичной трубы выпущен в атмосферу, то импульсы атмосферного давления будут распространяться во вторичной трубе навстречу импульсам, сгенерированным двигателем. Суть настройки длины вторичной трубы состоит в том, чтобы избежать одновременного появления в месте соединения труб импульса разрежения и обратного импульса атмосферного давления. На практике длина вторичной трубы слегка отличается от длины первичных труб. Для систем, которые будут иметь дальше глушитель, на конце вторичной трубы необходимо разместить максимального объема и максимальной площади сечения банку с поглощающим покрытием внутри. Эта банка должна как можно лучше воспроизводить акустические характеристики бесконечной величины воздушного пространства. Следующие за этой банкой элементы выпускной системы, т.е. трубы и глушители, не оказывают никакого воздействия на резонансные свойства выпускной системы. Их конструкцию, влияние на сопротивление потоку, на уровень и тембр шума мы уже обсудили. Чем ниже избыточное давление они обеспечат, тем лучше.

Итак, мы уже рассмотрели два варианта построения настроенной на определенные обороты выпускной системы, которая за счет дозарядки цилиндров на оборотах резонанса увеличивает вращающий момент. Это четыре отдельные для каждого цилиндра трубы и так называемый “паук” “четыре в один”. Следует также упомянуть о варианте “два в один — два в один” или “два Y”, который наиболее часто встречается в тюнинговых автомобилях, так как легко компонуется в стандартные кузова и не слишком сильно отличается по размерам и форме от стандартного выпуска. Устроен он достаточно просто. Сначала трубы соединяются попарно от первого и четвертого цилиндров в одну и второго и третьего в одну как цилиндров, равноотстоящих друг от друга на 180 градусов по коленчатому валу. Две образовавшиеся трубы также соединяются в одну на расстоянии, соответствующем частоте резонанса. Расстояние измеряется от клапана по средней линии трубы. Попарно соединяющиеся первичные трубы должны соединяться на расстоянии, составляющем треть общей длины. Один из часто встречающихся вопросов, на которые приходится отвечать, это какой “паук” предпочесть. Сразу скажу, что ответить на этот вопрос однозначно нельзя. В некоторых случаях стандартный выпускной коллектор со стандартной приемной трубой работает абсолютно так же. Однако сравнить упомянутые три конструкции, несомненно, можно. Тут надо обратиться к такому понятию, как добротность. Постольку, поскольку настроенный выпуск суть есть колебательная система, резонансные свойства которой мы используем, то понятно, что ее количественная характеристика — добротность — вполне может быть разной. Она действительно разная. Добротность показывает, во сколько раз амплитуда колебаний на частоте настройки больше, чем вдали от нее. Чем она выше, тем больший перепад давления мы можем использовать, тем лучше наполним цилиндры и, соответственно, получим прибавку момента. Так как добротность — энергетическая характеристика, то она неразрывно связана с шириной резонансной зоны. Не вдаваясь в подробности, можно сказать, что если мы получим большой выигрыш по моменту, то только в узком диапазоне оборотов для высокодобротной системы. И наоборот, если диапазон оборотов, в котором достигается улучшение, велик, то по величине выигрыш незначительный, это низкодобротная система. Первый. Так как вращающий момент пропорционален перепаду давления, то наибольший прирост даст высокодобротная система номер один. Однако в узком диапазоне оборотов. Настроенный двигатель с такой системой будет иметь ярко выраженный “подхват” в зоне резонанса. И совершенно никакой на других оборотах. Так называемый однорежимный или “самолетный” мотор. Такой двигатель, скорее всего, потребует многоступенчатую трансмиссию. Реально такие системы в автомобилях не применяются. Система второго типа имеет более “сглаженный” характер, используется в основном для кольцевых гонок. Рабочий диапазон оборотов гораздо шире, провалы меньше. Но и прирост момента меньше. Таким образом настроенный двигатель тоже не подарок, об эластичности и мечтать не приходится. Однако если главное — высокая скорость при движении, то под такой режим будет подстроена и трансмиссия, и пилот освоит способы управления. Система третьего типа еще ровнее. Диапазон рабочих оборотов достаточно широкий. Плата за такую покладистость — еще меньшая добавка момента, которую можно получить при правильной настройке. Такие системы используются для ралли, в тюнинге для дорожных автомобилей. То есть для тех автомобилей, которые ездят с частой сменой режимов движения. Для которых важен ровный вращающий момент в широком диапазоне оборотов. Второй. Как всегда, бесплатных пряников не бывает. На вдвое меньших от резонансной частоты оборотах фаза отраженной волны повернется на 180 градусов, и вместо скачка разрежения в фазе перекрытия к выпускному клапану будет приходить волна давления, которая будет препятствовать продувке, то есть сделает желаемую работу наоборот. В результате на вдвое меньших оборотах будет провал момента, причем чем большую добавку мы получим вверху, тем больше потеряем внизу. И никакими настройками системы управления двигателем невозможно скомпенсировать эту потерю. Останется только мириться с этим фактом и эксплуатировать мотор в том диапазоне, который можно признать. Однако человечество придумало несколько способов борьбы с этим явлением. Один из них — электронноуправляемые заслонки около выходных отверстий в головке. Суть их работы состоит в том, что на низкой кратной частоте заслонка перегораживает частично выхлопной канал, препятствуя распространению ударных волн и тем самым разрушая ставший вредоносным резонанс. Выражаясь более точно, во много раз уменьшая добротность. Уменьшение сечения из-за прикрытых заслонок на низких оборотах не столь важно, так как генерируется небольшое количество выхлопных газов. Второй способ — применение так называемых коллекторов “A.R.”. Их работа состоит в том, что они оказывают небольшое сопротивление потоку, когда давление в коллекторе меньше, чем у клапана, и увеличивают сопротивление, когда ситуация обратная. Третий способ — несовпадение отверстий в головке и коллекторе. Отверстие в коллекторе большего размера, чем в головке, совпадающее по верхней кромке с отверстием в головке и не совпадающее примерно на 1 — 2 мм по нижней. Суть та же, что и в случае с “A.R.” конусом. Из головки в трубу — “по шерсти”, обратно — “против шерсти”. Два последних варианта нельзя считать исчерпывающими ввиду того, что “по шерсти” все-таки несколько хуже, чем гладкие трубы. В качестве лирического отступления могу сказать, что несовпадение отверстий — стандартное простое решение для многих серийных моторов, которое почему-то многие “тюнингаторы” считают дефектом поточного производства. Третий. Следствие второго. Если мы настроим выпускную систему на резонансную частоту, например 4000 об/ мин, то на 8000 об/мин получим вышеописанный “провал”, если на этих оборотах система окажется работоспособной.

Немаловажный аспект при рассмотрении работы настроенного выпуска — это требования к его конструкции с точки зрения акустических свойств. Первое и самое важное — в системе не должно быть других отражающих элементов, которые породят дополнительные резонансные частоты, рассеивающие энергию ударной волны по спектру. Это значит, что внутри труб должны отсутствовать резкие изменения площади сечения, выступающие внутрь углы и элементы соединения. Радиусы изгиба должны быть настолько большими, насколько позволяет компоновка мотора в автомобиле. Все расстояния по средней линии трубы от клапана до места соединения должны быть по возможности одинаковыми.

Второе важное обстоятельство состоит в том, что ударная волна несет в себе энергию. Чем выше энергия, тем большую полезную работу мы можем от нее получить. Мерой энергии газа является температура. Поэтому все трубы до места их соединения лучше теплоизолировать. Обычно трубы обматывают теплостойким, как правило, асбестовым материалом и закрепляют его на трубе с помощью бандажей или стальной проволоки. Раз уж сейчас говорим о конструкции выпускной системы, нужно упомянуть о таком элементе конструкции, как гибкие соединения. Дело в том, что для переднеприводных автомобилей с поперечно расположенным силовым агрегатом существует проблема компенсации перемещений мотора относительно кузова. Так как опоры двигателя при такой компоновке принимают на себя весь реактивный момент от приводных валов ведущих колес, крены силового агрегата относительно кузова в продольном направлении могут иметь значительную величину. Конечно, величина отклонения сильно зависит от жесткости опор, однако нередко перемещения головки блока достигают величины 20 — 50 мм при переходе от торможения двигателем к разгону на низших передачах. В случае, если мы не позволим выпускной системе свободно изгибаться и сделаем ее абсолютно жесткой, конец глушителя должен будет совершать колебания вверх-вниз с амплитудой 500 — 600 мм, что определенно превышает разумную величину дорожного просвета значительной части автомобилей. Если мы попытаемся в таком случае закрепить трубу за кузов, то подвеска глушителя начнет играть роль дополнительной опоры силового агрегата и принимать на себя реактивный момент ведущих колес. В результате или непрерывно будут рваться подвесные элементы выпускной системы, или ломаться трубы. Для того чтобы избавиться от такого нежелательного явления, применяют гибкие соединения между трубами выпускной системы, позволяя приемной трубе перемещаться вместе с мотором, а всей остальной системе оставаться параллельной кузову. Есть несколько конструкций, позволяющих решить эту задачу. Две самые распространенные — гофрированная гибкая труба или шаровое соединение в виде полусферической шайбы с поджатой пружинами к ней ответной части. Гибкое соединение располагают как можно ближе к оси поворота силового агрегата на опорах, чтобы уменьшить перемещение труб относительно кузова. Для настроенных выпускных систем шаровое соединение предпочтительно. Внутренняя поверхность гофрированной вставки искажает форму трубы, что приводит к появлению паразитных частот резонанса. В качестве лирического отступления следует упомянуть, что для автомобилей такой компоновки при увеличении мощности в результате доработок двигателя и как следствие увеличения момента на передней ведущей оси, стандартные опоры силового агрегата окажутся перегруженными и позволят “прыгать” двигателю в подкапотном пространстве с размахом, вполне вероятно превышающим разумные пределы. Теперь, после того как стали ясны процессы, происходящие в выпускной системе, вполне можно перейти к практическим рекомендациям по настройке выпускных систем. Сразу скажу, что в такой работе нельзя полагаться на свои ощущения и необходимо “вооружиться” измерительной системой. Измерять она должна прямым или косвенным методом обязательно как минимум два параметра — вращающий момент и обороты двигателя. Совершенно понятно, что лучший прибор — динамометрический стенд для двигателя. Обычно поступают следующим образом. Для подготовленного к испытаниям двигателя изготавливают экспериментальную выпускную систему. Так как мотор на стенде и нет ограничений в конфигурации труб из-за отсутствующего кузова, самые простые формы вполне применимы. Экспериментальная система должна быть удобной и максимально гибкой для изменения ее состава и длин труб. Хороший и быстрый результат дают различного рода телескопические вставки, позволяющие менять длины элементов в разумных пределах. Если вы хотите добиться от вашей силовой установки максимальных параметров, вы должны быть готовы выполнить значительное количество экспериментов. Математический расчет и “попадание в яблочко” с первого раза исключите из рассмотрения, как событие чрезвычайно маловероятное. Его можно использовать как “приземление в заданном районе”. Некоторую уверенность в том, что вы недалеко от истины, дают опыт и предыдущие эксперименты с аналогичными по характеристикам моторами, у которых были получены хорошие результаты. Тут, вероятно, надо остановиться и ответить на вопрос, а на какую частоту надо настраивать выпускную систему. Для этого надо определить цель. Постольку, поскольку в самом начале статьи мы решили, что будем добиваться максимальной мощности, то лучший в этом смысле вариант, если мы получим прирост момента на том участке моментной кривой, где коэффициент наполнения, а следовательно, и момент начинают существенно падать из-за высокой скорости вращения, т.е. мощность перестанет расти. Тогда небольшое приращение момента даст существенный выигрыш в мощности. См. рис. 3 . Для того, чтобы узнать эту частоту, необходимо как минимум иметь моментную кривую двигателя с ненастроенным выхлопом, т.е., например, со стандартным коллектором, открытым в атмосферу. Конечно, такие эксперименты весьма шумные и, извините за грубое слово, вонючие, однако необходимые. Некоторые меры по защите органов слуха и хорошая вентиляция позволят получить необходимые данные. Затем, когда нам станет известна частота настройки, нагружаем двигатель так, чтобы обороты стабилизировались в нужной точке кривой при на 100% открытом дросселе. Теперь можно начинать экспериментировать с различными приемными трубами. Цель — подобрать такую приемную трубу или “паук”, а точнее ее длину, чтобы получить прирост момента на нужной частоте. При попадании в нужную точку динамометр сразу отзовется увеличением измеряемой силы. Быстрее всего результат будет получен, если использовать телескопические трубы и менять длину на работающем и нагруженном двигателе. Меры безопасности будут нелишними, так как присутствует вероятность ожога, да и работающий с полной нагрузкой двигатель опасен в смысле разрушения. Известны случаи, когда при аварии обломки блока цилиндров пробивали кузов автомобиля и влетали в кабину водителя. После того как будет найдена конфигурация “паука”, можно приступать к настройке вторичной трубы аналогичным образом. Как я уже говорил, влияние всех остальных элементов выпускной системы сводится к тому, чтобы не потерять уже достигнутого. Поэтому достаточно планируемые к установке в автомобиль трубы и глушитель пристыковать к найденным и настроенным первым двум элементам и убедиться, что настройки сохранились или существенно не ухудшились. Далее можно уже приступать к проектированию и изготовлению рабочей системы, которая будет соответствовать автомобилю и разместится в предназначенном для нее туннеле кузова. Должен сказать, что работа очень большая и маловероятно, что может быть выполнена без специального оборудования. Кроме того, необходимо иметь в виду, что на параметры настройки выпускной системы оказывают влияние многие факторы. Известный авторитет в области спортивных моторов в США Smokey Yunick считает, что совместной настройке подлежит выпускная система, впускные и выпускные каналы головки, форма камеры сгорания, фазы газораспределения (распредвал), фазировка двигателя, впускной коллектор, система питания и система зажигания. Он утверждает, что любое изменение в одной из названных компонент обязательно влечет за собой перенастройку всех остальных для того, чтобы в худшем случае не навредить, а в лучшем достичь большей эффективности мотора. Как минимум понятно, что в фазе перекрытия, когда настроенная выпускная система выполняет полезную работу, мы имеем дело со сквозным потоком газов из впускного в выпускной коллектор через камеру сгорания. Впускной коллектор точно так же, как и выпускная система, может рассматриваться как колебательная акустическая система со своими резонансными свойствами. Так как цель настройки состоит в получении максимального перепада давления, роль впускного коллектора, а точнее его геометрии, очевидна. Ее влияние для моторов с широкой фазой перекрытия может оказаться меньше, чем от выпуска в силу меньшей энергетики, однако совместная настройка категорически необходима. Для узкофазных моторов (читай — серийных) настройка впускного коллектора, пожалуй, единственный способ получить резонансный наддув. Пару слов хотелось бы сказать о разнице в настройке впрыскного и карбюраторного моторов. Во-первых, у впрыскного мотора конструкция впускного коллектора может быть любая, так как мы не связаны с конструктивными особенностями карбюратора, а значит, возможности настройки гораздо шире. Во-вторых, у него на кратных частотах отрицательное влияние обратного перепада давления существенно ниже. Карбюратор на любое движение воздуха в диффузоре распыляет топливо. Поэтому для кратных частот характерно переобогащение смеси из-за того, что один и тот же объем воздуха сначала движется через карбюратор из камеры сгорания к фильтру, а затем в том же такте обратно. В случае электронной системы впрыска количество топлива может быть строго отрегулировано с помощью программы управления. Также программируемый угол опережения зажигания может помочь уменьшить на этих оборотах вредное влияние обратной волны, не говоря уже об управлении теми заслонками на выхлопе, которые уже упоминались. И в-третьих, требование качественного приготовления смеси на низких оборотах диктует необходимость применять сужающееся сечение в карбюраторе, известное как диффузор, что создает дополнительное сопротивление потоку на высоких оборотах. Ради справедливости надо сказать, что горизонтальные сдвоенные карбюраторы Вебер, Деллерто или Солекс частично решают эту проблему, позволяя каждому цилиндру дать трубу необходимой длины с целью настройки на нужные обороты, иметь достаточно большое сечение, но с переобогащением все равно бороться не в силах. Есть еще один прием, позволяющий повысить эффективность выпускной системы. Применяется он в основном в тюнинге, так как при определенных эстетических наклонностях конструктора позволяет создать броский внешний вид автомобиля. Где-нибудь, как минимум на фотографиях авто американских любителей, вы наверняка видели автомобили с поднятыми из-под заднего бампера чуть ли не до крыши концами выпускных труб. Идея такой конструкции состоит в том, что при движении за задним срезом автомобиля создается “воздушный мешок”, или зона разрежения. Если найти то место, где разрежение максимально, и конец выхлопной трубы поместить в эту точку, то уровень статического давления внутри выпускной системы мы понизим. Соответственно статический уровень давления у выпускного клапана упадет на ту же величину. Постольку, поскольку коэффициент наполнения тем выше, чем ниже давление у выпускного клапана, такое решение можно считать удачным. В заключение хочу сказать, что при кажущейся простоте установка другой, отличной от серийной выпускной системы, как бы она ни была похожа на то, что применяется в спорте, вовсе не гарантирует вашему автомобилю дополнительных лошадиных сил. Если у вас нет возможности провести настройки для вашего конкретного варианта мотора, то самый разумный путь состоит в том, что вы купите полный комплект комплектующих для доработки мотора у того, кто эти испытания уже выполнил и заранее знает результат. Вероятно, комплект должен включать в себя как минимум распредвал, впускной и выпускной коллекторы и программу для вашего блока управления двигателем.

Источник


Смотрите также