(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Как перевести котел на сжиженный газ


Перевод котла на сжиженный газ

Здесь вы узнаете:

Сжиженным нефтяным газом в России принято называть углеводородные газы (СУГ) на основе смеси сжиженных под давлением лёгких углеводородов с температурой кипения от -50 до 0 °C. Состав такого газа может существенно различаться, основные компоненты: пропан, пропилен, изобутан, изобутилен, н-бутан и бутилен. Сегодня для систем автономного газоснабжения используют смеси сжиженного технического пропана и бутана (СПБТ, нефтяной газ, соответствует ГОСТ 20448-90), а не сжиженный природный газ (метан). Последний хранится при низких температурах в особых криогенных сосудах, требует дополнительно испарителей и экономически оправдан только для отопления большой группы домов.

Сжиженный углеводородный газ (СУГ) при небольшом повышении давления переходит в жидкое состояние. Тогда его можно легко перевозить и хранить. При снижении давления или небольшом повышении температуры «жидкий» газ начинает испаряться и переходит в газовую фазу, заканчиваясь насыщением. Давление насыщенных паров зависит только от температуры окружающей среды и не зависит от количества жидкости.

Из одного литра СУГ получается около 0,25 м3 газовой фазы. Зимой давление газа снижается, и производительность подачи газовой фазы падает. Если отбирать пары интенсивно (например, включить котел на 100% мощности), то ускоренное испарение жидкости приведет к ее охлаждению и, значит, к снижению производительности. Чтобы получить требуемые объемы газов, увеличивают количество емкостей СУГ. Оптимальным набором нужных свойств обладает пропан. Он устойчиво поставляет газовую фазу даже при морозах, но относительно дорог и хорош только зимой. Летом, при жаре, давление его паров доходит до предельного значения, допустимого для стенок сосуда (1,6 МПа), поэтому пропан разбавляют более дешевым и не интенсивно испаряющимся бутаном.

СУГ не рекомендуется размещать в подвалах и даже цокольных помещениях, если площадь окон в них менее 1 м2. Поскольку для полного сгорания СПБТ требуется много воздуха, в котельных надо обеспечить хорошую вентиляцию. Кроме того, в помещении необходимо организовать естественное освещение, а также установить датчик обнаружения утечки газов и автоматический отсекающий клапан с автономным питанием.

Отличия сжиженного газа от природного

Сжиженный газ имеет свои преимущества и недостатки перед природным газом. А именно:

  • Природный газ значительно дешевле сжиженного.
  • СУГ (сжиженные углеводородные газы) имеют более высокую теплоту сгорания, нежели природный.
  • Сжиженный газ отличается меньшим распадом пропана, что положительно сказывается на безопасности Вашего жилища.

Причины и принципы переделки котла

С первых строк хотим предупредить, что работы по переоснащению котла для перевода на иной вид топлива должны производиться мастером организации, с которой заключен договор на поставку газа и обслуживание оборудования.

Однако знать суть и этапы процесса должен любой хозяин для элементарного контроля действий приглашенных исполнителей. А сомнения в их компетенции порой вполне оправданно закрадываются. Поэтому лучше проследить за осуществлением процедуры, от которой, между прочим, зависит безопасность дома и домочадцев.

Перевод котла на работу от источников сжиженного газа требуется, если прокладка магистральной системы к дому откладывается на неопределенный период или невозможна по техническим причинам.

Источником сжиженного газа, требующегося для работы автономной системы отопления, служит либо группа баллонов, либо газгольдер.

Котлы мощностью до 35 кВт могут работать от одного баллона, но лучше подключать к группе из 2-4 штук. Так заправлять придется гораздо реже.

Если для устройства отопления дома устанавливается напольный котел, а для подготовки горячей воды в схему включают бойлер, то для снабжения оборудования газом лучше поставить газгольдер.

Еще бывает, что представитель газовой службы никак не может добраться до удаленного местечка. В этой ситуации домашний мастер, конечно, попытается сделать все собственными руками. Но за результат усилий неопытного в газовой сфере умельца ответственности нести будет он сам, да и гарантии производителя аннулируются.

Приобретая газовый котел для бытового использования, мы получаем аппарат, настроенный на переработку магистрального варианта топлива. Централизованный газопровод поставляет нам смесь горючих газов, в которой преобладает метан. Магистральный газ поступает в приборы с природной плотностью и давлением, равным 21 мбар.

Сжиженный газ – утрированное название смеси пропана с бутаном, в которой может преобладать или первый, или второй компонент. В ней может быть преимущественно бутан с незначительной примесью пропана или наоборот, на 99 % преобладать пропан.

Плотность сжиженной смеси увеличивается в 600 раз. Давление повышается не на столько, но все же оно выше, чем у природного топлива, 30-31 мбар.


Для получения сжиженного газа давление пропана и бутана повышают примерно в 600 раз. Эта процедура предоставляет возможность сокращать объем топлива и хранить его перед использованием в сжиженном состоянии

Типы газов, на которых работают котлы, стандартизируются. Им присваивают коды, которые изготовитель указывает в технической документации. Так, потребление котлом магистрального газа отмечено кодом G20. Возможность работы котла от сжиженной смеси с преобладанием бутана обозначают G30, от смеси с преобладанием пропана – G31.

Для того чтобы голубое топливо выполняло свои значимые обязанности газ через форсунки поступает в камеру сгорания. Там газ с помощью горелки смешивается с воздухом в оптимальных для конкретного вида топлива пропорциях. Значит, на горелку газ должен подаваться в необходимом для нормального горения объеме.

Нормальное смесеобразование возможно при подходящем для его осуществления диаметре форсунок. От размера подающих отверстий зависит, сколько газа под определенным давлением попадет в камеру сгорания при конкретном объеме воздуха. Вот поэтому для сжиженных смесей и для магистрального газа устанавливаются форсунки с разным сечением.


Для перехода на потребление сжиженного газа не нужно кардинально переделывать оборудование, а тем более покупать новый агрегат. Надо всего лишь поменять либо только форсунки, либо коллектор (рампу) с форсунками

Заметим, что сечение форсунок определено не только типом газа, но и мощностью самого котла. К сведению, для работы агрегата мощностью 10кВт, функционирующего в максимальном эксплуатационном режиме, магистрального газа нужно 1,2 м³/ч, сжиженной смеси любого вида 0,86 кг/ч.

Чем мощнее оборудование, тем больше горючего требуется для его работы. Тем больше должен быть размер форсунок, пропускающих голубое топливо в камеру сгорания. Их сечение четко просчитано и строго регламентировано производителем, выпускающих для серии котлов заданной мощности горелки с форсунками заданного диаметра.


Во время поступления газа из форсунки газ смешивается с порцией воздуха, требующегося ему для нормального процесса горения. Обе составляющие должны подаваться в камеру сгорания в четко выверенных пропорциях

Так как же все-таки перейти на сжиженный газ, если изначально не догадались купить котел для сжиженного газа? Правильно, заменить либо коллектор полностью со всем набором форсунок, либо только форсунки, оставив коллектор на месте. Второй вариант возможен не во всех котлах.

Кроме замены устройств, для подачи сжиженного газа потребуется еще выполнить перенастройку горелки газового котла с электронным типом управления. Это необходимо для полноценной доставки воздуха в объеме, требующемся для процесса бесперебойного горения. Новые настройки также обеспечат прерывание подачи газа при возникновении рискованной ситуации.

Потребуется также установить редуктор, предназначенный для регулировки давления газообразного топлива. К газовому редуктору можно подсоединить один или группу баллонов. Возможно, потребуется поменять газовый клапан, если возникнет необходимость.


Для подключения котла к баллонам или газгольдеру требуется настроить редуктор на эксплуатационное значение давления газа. Иногда приходится менять еще и газовый клапан в котле, если он не подходит для подачи газа под требующимся давлением

В любой ситуации перед заказом исполнителя для перевода настенного или напольного газового котла на сжиженное горючее стоит проконсультироваться в газовой службе, курирующей ваше оборудование и подачу газа на ваш объект.

Там подскажут, какие устройства следует приобрести для перевода. Подсчитают, в какую сумму вам обойдется модернизация вместе с оплатой мастера.

Какие котлы можно перевести на работу со сжиженным газом


Котлы на пропане выпускают и отечественные, и зарубежные производители — в большинстве случаев речь идет об универсальных моделях, которые способны при изменении настроек работы автоматики адаптироваться к разным показателям давления в газопроводе. Но, при желании можно переоборудовать под работу на сжиженном топливе и стандартное оборудование с магистральным подключением. Для этого потребуется произвести замену форсунки или всей горелки целиком.

Важно помнить о том, что переделка с магистрального на автономное газоснабжение возможна не во всех моделях котлов. Необходимым условием её проведения является возможность работы оборудования под давлением в 3 — 4 Мбар. Еще один важный момент касается работы газового клапана — в ряде моделей его приходится заменять полностью, поскольку пропускная способность этого узла при работе на СУГ должна составлять 1,8 — 2 м³/час.

Оптимальным решением для переоборудования под подачу газа не из магистральных систем являются конденсационные котлы — их КПД в этом случае будет гораздо выше, а расход топлива снизится на 20%. Неплохо, если все необходимые для переоборудования комплектующие будут включены производителем в комплект поставки. Приобретение сменной горелки может оказаться экономически невыгодным — в среднем, её стоимость составляет до трети от общей цены котельного агрегата.

Как произвести переоборудование

Для того чтобы переоборудовать обычное газовое отопительное оборудование в котел на пропане потребуется произвести следующие действия:

  1. Осуществить замену форсунок или всей горелки. В современных конденсационных моделях иногда бывает достаточно обычной замены картриджа. Все эти действия должны производиться профессионалами, имеющими соответствующий допуск — только так можно обеспечить безопасную эксплуатацию системы после подключения.
  2. Выполнить монтаж редуктора — преобразователя, снижающего давление. Этот шаг необходим для того, чтобы адаптировать котел к работе на СУГ. Если баллонов несколько, каждый из них может быть подключен к отдельному редуктору или общему преобразователю.
  3. При необходимости — заменить газовый клапан.
  4. Если предполагается подключение от баллонов — следует позаботиться об установке рампы спаривания, позволяющей соединять их в единую систему (до 10 емкостей одновременно). Таким образом можно обеспечить поддержание стабильного уровня давления в системе, снизить расход топлива и частоту заправок.
  5.  В котлах с электронным управлением, снабженных переключателем вида топлива, требуется также установить параметр G31 соответствующий пропану (по умолчанию установлен G20).

В любом случае, вне зависимости от того подключаете вы ГБО или планируете подачу топлива из газгольдера, производить работы по монтажу или переоснащению имеющегося оборудования могут только профессионалы. Иначе гарантировать безопасность его эксплуатации будет невозможно.

Шаги переделки со сменой горелки

Конструкция ряда котлов устроена так, что нет смысла в выворачивании отдельно форсунок. Для них производители выпускают модули, рассчитанные на сжиженный газ. Запросто поменять модуль горелки можно, например, в котле Навьен Делюкс (Navien Deluxe).

Вся работа заключается в замене коллектора с форсунками на точно такое же устройство, но с отверстиями иного размера. То, что оно будет заводского производства – несомненный плюс, гарантирующий герметичность газопроводных каналов. Сомневаться в его дальнейшей безопасной эксплуатации не придется.

Работы по переоборудованию и перенастройке в этом случае проводятся следующим образом:

  • Отключаем агрегат от электропитания и перекрываем кран на трубе подачи газа.
  • Снимаем лицевую панель с корпуса котла.
  • Отсоединяем электроды, подключенные к системе розжига.
  • Демонтируем трубу подачи газа, находящуюся в пределах котла, предварительно открутив 4 удерживающих ее винта.
  • Снимаем крышку, установленную на закрытую камеру сгорания. Для этого откручиваем 11 винтов.
  • Демонтируем датчик защиты от перегрева вместе с предназначенным для него кронштейном.
  • Извлекаем коллектор вместе с закрепленными на нем форсунками. Чтобы снять его откручиваем два винта, находящихся справа и слева от устройства.
  • Устанавливаем на подлежащий установке новый коллектор уплотняющее кольцо, герметизирующее вход газопроводной трубы. Монтируем новый коллектор на штатное место и фиксируем его винтами.
  • Микропереключатель, по счету пятый снизу, переводим вправо. Так мы перенастраиваем прибор на работу от сжиженного газа.

После этих нехитрых манипуляций собираем котел, соблюдая обратную последовательность. Таким же образом производится переделка и перенастройка большинства напольных газовых котлов, особенно, если они конденсационного типа. Этот вариант котлов чаще всего даже рассчитан на возможность перевода.

Наглядно ознакомиться с процедурой замены коллектора с газовыми форсунками и настройкой котла поможет следующая фото-подборка:

  • Для переделки котла под работу на сжиженном газе покупаем коллектор с форсунками, рекомендованного производителем размера;
  • Для того чтобы удалить старый коллектор с форсунками и поменять его на новый, разбираем котел. Сначала демонтируем лицевую панель;
  • Чтобы снять крышку закрытой камеры, отсоединяем сначала провода от системы розжига газового котла;
  • Снимаем мешающую достать коллектор трубу подачи газа в горелку. Для этого вывинчиваем четыре шурупа;
  • Снимаем датчик устройства защиты от превышения температуры при работе котла. Его не отсоединяем;
  • Выкручиваем шуруп, удерживающий кронштейн от датчика системы защиты. Он мешает снять крышку с горелки. Демонтируем держатель;
  • Для того чтобы снять крышку с закрытой газовой горелки, откручиваем 11 штук шурупов;
  • Аккуратно "подцепив" край крышки от закрытой горелки, выдвигаем ее со штатного места, стараясь не деформировать;

Шаг 1: Покупка коллектора для замены

Шаг 2: Удаление лицевой панели котла

Шаг 3: Отсоединение проводов системы розжига

Шаг 4: Демонтаж трубы подачи газа в горелку

Шаг 5: Удаление датчика защиты от перегрева

Шаг 6: Откручивание кронштейна датчика

Шаг 7: Выкручивание винтов из крышки горелки

Шаг 8: Отделение крышки закрытой горелки. Теперь остается только сменить коллектор и настроить газовый агрегат на работу от баллонов или газгольдера:

  • Осматриваем пространство камеры сгорания. Подкопченные стенки - хороший признак, значит, производитель проверял работу агрегата;
  • Выкрутив два шурупа слева и справа от коллектора, извлекаем его, чтобы поставить на его место другое устройство;
  • Сняв с предыдущего коллектора уплотняющее кольцо, перемещаем его на устанавливаемое устройство. Подключаем его;
  • Пятый снизу микропереключатель, находящийся на плате управления, переводим вправо. Настройка завершена;

Шаг 9: Осмотр внутреннего пространства камеры сгорания

Шаг 10: Отсоединения коллектора для природного газа

Шаг 11: Установка коллектора для сжиженного газа

Шаг 12: Настройка котла на сжиженный газ

Однако следует знать, что обе вышеописанные методики переделки вообще реализуются не со всеми моделями агрегатов. Есть котлы, которые даже не стоит пытаться переводить на сжиженный газ, особенно давно выпущенные агрегаты.

В любом случае перед тем как запланировать переделку и перевод, нужно поинтересоваться у представителей компании, выполнившей первый запуск, можно ли реализовать подобный проект. Стоит также изучить паспорт газоперерабатывающего оборудования и рекомендации производителя. Обычно там оговаривается возможность.

Как рассчитать количество баллонов в системе

Расход топлива в случае, если используются котлы на пропане имеет важное значение. Одно дело, если вы используете газгольдер емкостью до 6000 л, одной заправки которого при потреблении в 20 литров в сутки хватит почти на год бесперебойной эксплуатации. Совершенно иначе будет выглядеть тот же расход топлива при использовании баллонов. С учетом емкости одного резервуара равной 40 литрам, за неделю двухконтурным котлом будет израсходовано до 120 литров. То есть, расход будет вполне ощутимым. И, чтобы избежать частой заправки или неожиданного отключения подачи топлива, стоит позаботиться о том, чтобы одной заправки хватало хотя бы на месяц бесперебойной работы.

 

Для этого баллоны объединяют в группы — по нормативам количество резервуаров в них может достигать 15 единиц. Но, большинство стандартных рамп рассчитаны на подключение до 10 емкостей сразу. Подключаются они через независимые редукторы или один общий преобразователь давления — по основной и резервной схемам, в рамках которых контролируется расход топлива в каждом комплекте. Как только давление в системе упадет ниже определенных значений, установленная арматура откроет доступ к подаче газа из дополнительных резервуаров, обеспечивая таким образом безопасность в ходе эксплуатации оборудования.

Снизить расход топлива можно, если используется система с автоматической регулировкой. В этом случае можно будет настроить разные режимы потребления топлива с учетом сезонных факторов и показателей атмосферных температур. Например, при поддержании средней температуры в доме в период отсутствия владельцев на уровне +9 ºС, расход составит менее одного баллона в неделю.

Рекомендации по технике безопасности

Перевод котла и его перенастройка на потребление сжиженного газа диктует необходимость «перенастроить» свое отношение к устройству подачи и хранения голубого горючего.

Обязательно надо запомнить, что:

  • Баллоны или газгольдер, являющиеся резервуарами для хранения газа, поставляющие топливо в бытовое оборудование по мере необходимости, требуется периодически пополнять.
  • Обращаться для заправки газом группы баллонов или газгольдера нужно в сертифицированные организации, располагающие оборудованием для фиксации веса газа в баллоне и его реального объема в газгольдере.
  • Заправка замкнутых резервуаров для газа производится на 85% полезного объема сосуда. Этот резерв необходим на случай теплового расширения топлива, чтобы избежать взрыва.

Неопасной, но требующей особого отношения ситуацией при пополнении запасов сжиженного голубого топлива, является заливка жидкости с плотностью, отличающейся от плотности предыдущей жидкости. Из-за этой разницы остатки сжиженного газа могут не перемешаться с вновь залитой порцией.

В резервуаре от разности плотности формируется некое подобие двух не соединяющихся секторов, в каждой из которых циркулирует сжиженный газ. Однако на границе секторов спустя небольшой период произойдет конвективный теплообмен. После выравнивания температур, сравняются плотности и жидкости смогу перемешаться.


Сжиженный газ как и магистральный – легко воспламеняющаяся, горючая жидкость с высокой скоростью распространения пламени. Во избежание катастрофических ситуаций следует четко соблюдать правила эксплуатации и заполнять баллоны не более чем на 85%

Обычно этот процесс, имеется в виду непосредственно перемешивание, сопровождается интенсивным испарением сжиженного газа. Чтобы избежать связанных с ним потерь, следует применять смешивающие устройства в процессе заполнения. Но лучше выбирать способ, позволяющий исключить вышеописанное явление.

Пополнение баллонов и газгольдера голубым горючим вообще – процесс, требующий повышенного внимания, иначе проблемы могут быть весьма серьезными и даже катастрофичными. Существенной проблемой признают быстрое распространение и испарение сжиженной газовой смеси.

Если не нарушаются правила безопасной эксплуатации потребляющего газ оборудования, магистральный метан редко взрывается. Это случается только при значительных утечках, если резко меняется техническое состояние газа в окружающем пространстве. К примеру, на кухне с явными признаками утечки вместо обязательного проветривания включают свет.

Сжиженный газ при расширении в замкнутом сосуде от внешнего нагрева обязательно взрывается, если в резервуаре не оставили достаточного пространства для его расширения. Горит голубое топливо крайне интенсивно. Так как газ быстро поглощается атмосферой, зона горения расширяется с высокой скоростью.

Особенности эксплуатации

Котлы на пропане эксплуатирующиеся с подключением к газгольдеру, практически не требуют дополнительного внимания — достаточно регулярно пополнять запасы топлива. А вот в случае с газобаллонным оборудованием потребуется не просто отслеживать уровень потребления энергоносителя, но и производить заправку резервуаров (а за один раз можно транспортировать на АГЗС не более трех баллонов), а также обеспечить условия для их безопасной эксплуатации.

Согласно правилам безопасности, устанавливать баллоны с газом в помещениях, где есть отопительные приборы — запрещается. Более того, для обеспечения максимально высокого уровня безопасности следует обеспечить их размещение в специальном металлическом шкафу, снабженном теплоизоляционным контуром — для предотвращения нагрева емкостей в жару и их промерзания при снижении атмосферных температур.

Нормативы предписывают хранить заправленные, но не подключенные к системе емкости, в отдельном помещении или здании, на расстоянии от 10 и более метров от работающей отопительной системы. Обязательно наличие вентиляции — в этом случае при утечке удастся избежать образования взрывоопасных соединений в концентрации, достаточной для случайного детонирования. Во избежание образования коррозии на корпусах резервуаров их следует регулярно подвергать осмотру и предоставлять для аттестации герметичности корпуса сотрудникам газовой службы не реже, чем раз в четыре года.

Сгорание

Темы котельной - топливо, такое как нефть, газ, уголь, дрова - дымоходы, предохранительные клапаны, резервуары - эффективность сгорания

Температура адиабатического пламени

Температура адиабатического пламени водорода, метана, пропана и октана - в Кельвинах

Воздух Подача в котельную

Неполное сгорание котла может привести к образованию окиси углерода - CO - и повторное возгорание может вызвать катастрофические последствия как для персонала, так и для имущества

Альтернативные виды топлива - Свойства

Свойства альтернативных видов топлива, таких как биодизель, E85, КПГ и подробнее

Уголь антрацит

Марки угля антрацита

Плотность в градусах API

Плотность в градусах API выражают плотность или плотность жидких нефтепродуктов.Калькулятор преобразования API - удельный вес

Стандарт ASTM - Том 05.06 Газообразное топливо, уголь и кокс

Обзор стандартов в разделе 5 ASTM - Нефтепродукты, смазочные материалы и ископаемое топливо - Том 05.06 Газообразное топливо, уголь и кокс

Биогаз - Энергосодержание

Энергосодержание в биогазе, полученном из городских и промышленных отходов

Биогаз - Типичный состав

Типичный состав биогаза, произведенного из бытовых отходов

Биомасса - Более высокая теплотворная способность

Высокоэффективное тепловое топливо биомассы

Биомасса, используемая в качестве Топливо - энергоемкость

Некоторые виды биотоплива и их энергоемкость

КПД котла

КПД котла - полная и низшая теплотворная способность

Скорость выхлопа котла

Рекомендуемая скорость выхлопа котла

Тепловая нагрузка котла и площадь дымохода

900 06 Мощность котла и площадь дымохода

Размер дымохода и камина

Дымоходы и камины для каминов и печей, сжигающих дрова или уголь в качестве топлива

Размер дымохода

Расчет тяги и требуемой площади дымохода

Классификация угля 9000 угля 5

Классификация угля основан на летучих веществах и кулинарной способности чистого материала

Классификация газов

Окислители, инертные и горючие газы

Эффективность сгорания и избыток воздуха

Оптимизация КПД котла важна для минимизации расхода топлива и нежелательного выброса в окружающую среду

Горение топлива и оксидов азота ( NO x ) Выбросы

Выбросы оксидов азота - NO x - при сжигании топлива, такого как нефть, уголь, пропан и др.

Сжигание топлива - выбросы диоксида углерода

Выбросы углекислого газа в окружающую среду CO 2 при сжигании таких видов топлива, как уголь, нефть, природный газ, сжиженный нефтяной газ и биоэнергетика

Сжигание древесины - теплотворная способность

Дрова и сжигание древесной теплотворной способности - для таких пород, как сосна, вяз, Hickory и др.

Процессы сгорания и эффективность сгорания

Типичные показатели эффективности сгорания в каминах, обогревателях, котлах и т. Д.

Испытания на горение

Испытания на сжигание мазутных и газовых горелок

Выбросы при сжигании биомассы 6

9000 и выбросы

Энергосодержание в некоторых общих источниках энергии

Некоторые распространенные виды топлива для обогрева и их энергосодержание

Взрывные двери в дымоходах

Рекомендуемый размер взрывозащитных дверей или стабилизаторов тяги в установках, работающих на жидком топливе

Дрова для костра - шнур

Совместно rd - наиболее распространенная единица для покупки топливной древесины

Температура пламени Газы

Температура адиабатического пламени для обычных топливных газов - пропана, бутана, ацетилена и других - воздуха или кислорода

Температура вспышки - жидкости

Обычные жидкости и топливо и их температуры вспышки

Температуры точки росы дымовых газов

Температуры точки росы дымовых газов и конденсации водяного пара

Ископаемые и альтернативные виды топлива - энергосодержание

Перечень чистого (низкого) и валового (высокого) содержания энергии в ископаемых и альтернативные виды топлива вместе с описанием измерения содержания энергии

Топливные газы и значения сгорания

Значения сгорания для некоторых топливных газов, таких как природный газ, пропан и бутан - БТЕ на кубический фут

Топливные газы и индекс Воббе

Воббе индекс для обычных топливных газов - пропана, бутана, метана и др.

Топливные газы Нагревательная ценность

Горючие газы и теплотворная способность - ацетилен, доменный газ, этан, биогаз и др. - Стоимость брутто и нетто

Мазут - резервуары для хранения

Размеры резервуаров для хранения мазута

Горелки для мазута

Типы мазутных горелок - типы горшков, типы горелок и роторные типы

Значения сгорания мазута

Значения сгорания в британских тепловых единицах / галлон для жидкого топлива No.1 по № 6

Топливные насосы - мощность всасывания

Одноступенчатые и двухступенчатые топливные насосы и их мощность всасывания

Вязкость мазута

Топливные масла - и их вязкость в зависимости от температуры

Топливо - воздух и дымовые газы Газы

Воздух для горения и дымовые газы для обычных видов топлива - кокс, нефть, древесина, природный газ и др.

Топливо - плотность и удельный объем

Плотность и удельные объемы некоторых распространенных видов топлива - антрацита, бутана, газойля, дизельного топлива, кокс , масло, древесина и др.

Топливо - более высокая и более низкая теплотворная способность

Более высокая и более низкая теплотворная способность (= теплотворная способность) для некоторых распространенных видов топлива - кокса, масла, древесины, водорода и др.

Топливо и точки кипения

Некоторые обычные виды топлива и их точки кипения

Топливо и химикаты - Температура самовоспламенения

Температура самовоспламенения для некоторые распространенные виды топлива и химикаты бутан, кокс, водород, нефть и др.

Температура выхлопных газов

Температура выхлопных и выходных газов для некоторых распространенных видов топлива - природного газа, сжиженной нефти, дизельного топлива и др.

Топливо Дымовые газы и средняя точка росы

Температура точки росы дымовых газов для типичного топлива

База данных свойств топлива

Онлайн-база данных свойств нефтяного топлива

Газообразное топливо и его химический состав

Химический состав некоторых распространенных газообразных топлив, таких как угольный газ, природный газ, пропан и др.

Газы - Пределы концентрации взрыва и воспламеняемости

Пределы пламени и взрыва для газов - пропана, метана, бутана, ацетилена и др.

Значения брутто и нетто нагрева для некоторых распространенных газов

Общая теплотворная способность и полезная теплотворная способность некоторых обычных газов водород, метан и др.

Полная стоимость сгорания Материалы

Полная величина сгорания для некоторых широко используемых материалов - углерода, метана, этилена и др. - значения в БТЕ / фунт

Потери напора в масляных трубах

Потери напора или давления из-за трения в масляных трубах - различная вязкость и ламинарное течение.

Тепловые потери в масляных трубах

Тепловые потери в Вт / м · K и БТЕ / час · фут o F из масляных трубок в диапазоне температур 10 - 38 o C ( 50 - 100 o F )

Теплота сгорания

Табличные значения теплоты сгорания (= энергосодержание) обычных веществ вместе с примерами, показывающими, как рассчитать теплоту сгорания

Тепловая ценность

Брутто (высокая) и чистая ( низкая) теплотворная способность

Топливо для отопления - сравнение затрат

Формулы сравнения затрат для топлива для отопления, такого как природный газ, пропан, сжиженный нефтяной газ, мазут и электроэнергия

Скорость циркуляции водогрейного котла

Мощность котла и расход воды - Британские и синие шкалы- ед.

Прерывистое горение и КПД котла

КПД снижается из-за прерывистой работы котла

Сжиженный газ Natu ral Gas - LNG

LNG или сжиженный природный газ

Сжиженный нефтяной газ - LPG

LPG или сжиженный нефтяной газ

Метан - преобразование между жидкими и газообразными единицами

Преобразование между жидкими и газообразными единицами для LNG или метана

Расход газа

Расход природного газа на обычное оборудование, такое как котлы, духовки, плиты, чайники и т. Д.

Маслопроводы - Рекомендуемые скорости потока

Скорости потока в маслопроводах должны поддерживаться в определенных пределах

Онлайн-калькулятор эквивалентов топлива

Онлайн-калькулятор для расчета эквивалентов энергии топлива - нефть и газ

Оптимальный процесс горения - топливо и избыток воздуха

Стабильные и эффективные условия горения требуют правильного смешения топлива и кислорода

Парафины и алканы - характеристики горения

Тепловые характеристики, воздух / фу отношения el, скорость пламени, температуры пламени, температуры воспламенения, точки вспышки и пределы воспламеняемости

Пропан - теплофизические свойства

Химические, физические и термические свойства пропанового газа - C 3 H 8

Пропан - пар Давление

Давление паров пропана

Пропан-бутановые смеси - давление испарения

Давление испарения пропан-бутановых смесей

Крыша для дымоходов

Крыша для дымовых труб и одностенных вентиляционных отверстий Минимум

Размер котельной

площадь

Уголь стандартных сортов - теплотворная способность

Уголь стандартных сортов и теплотворная способность

Стандартные эталонные топлива и их эквиваленты

Преобразование между эквивалентами топлива

Стехиометрическое горение

Стехиометрическое горение и внешнее мощность воздуха

Классификация топки

Топки для угля можно классифицировать по мощности сжигания угля

Отходы топлива

Теплотворная способность топлива из отходов

Древесина и биомасса

Показатели сгорания влажной и сухой древесины - БТЕ / фунты, кДж / кг и ккал / кг

Породы древесины - влажность и вес

Вес сырых и высушенных на воздухе дров

.

Понимание конструкции танкеров для перевозки сжиженного газа

В нашей предыдущей статье мы описали конструкцию различных типов танкеров. В этой статье мы разберемся с типами и конструкцией судов-газовозов.

Суда, предназначенные для перевозки сжиженного газа, в последние годы стали более значительными и их число увеличилось в связи с увеличением потребности в альтернативном топливе.

Два основных типа газовозов:

  1. Перевозчики СНГ (сжиженный углеводородный газ) и
  2. Перевозчики СПГ (сжиженного природного газа).

Чтобы понять конструктивные характеристики этих двух типов судов, нам сначала нужно знать несколько важных деталей о составе и свойствах СНГ и СПГ.

Сжиженный углеводородный газ (СНГ):

Нефть углеводородные продукты, такие как пропан и бутан, а также их смеси, классифицируются нефтяной промышленностью как СНГ. Сегодня он широко используется в бытовых и промышленных целях. Самым важным свойством сжиженного нефтяного газа является то, что он подходит для перекачивания в жидкую форму и транспортировки.Но есть условия, связанные с давлением и температурой, которые необходимо поддерживать, чтобы все вышеперечисленное не создавало угрозы для жизни, окружающей среды и груза. Для транспортировки сжиженного нефтяного газа необходимо соблюдение как минимум одного из следующих условий:

  • Газ должен находиться под давлением при температуре окружающей среды.
  • Газ должен быть полностью охлажден до точки кипения. Температура кипения сжиженного нефтяного газа составляет от -30 градусов по Цельсию до -48 градусов по Цельсию.Это состояние называется полностью охлажденным.
  • Газ должен быть частично охлажден до пониженной температуры и находиться под давлением.

На более позднем этапе мы увидим, как вышеуказанные условия влияют на конструкцию различных типов цистерн для сжиженного нефтяного газа.

Другие газы, такие как аммиак, этилен и пропилен, также перевозятся в сжиженном виде в газовозах для сжиженного нефтяного газа. Однако этилен имеет более низкую точку кипения (-140 градусов Цельсия), чем другие СНГ. Следовательно, его следует перевозить в полуохлажденных или полностью охлажденных условиях.

Сжиженный природный газ (СПГ):

Природный газ, из которого удалены такие примеси, как сера и диоксид углерода, называется сжиженным природным газом. После удаления примесей его охлаждают до точки кипения (-165 градусов Цельсия) при атмосферном давлении или почти при атмосферном давлении. Обратите внимание, что, в отличие от СНГ, СПГ охлаждается до низких температур, но давление не превышает атмосферного. Это то, что отличает конструкцию танкеров СПГ от газовозов.СПГ в этом состоянии транспортируется как жидкий метан.

Проектирование различных типов газовозов:

В этой статье мы разберемся с общей компоновкой и другими деталями конструкции газовозов, когда мы рассмотрим различные типы судов в зависимости от их функций и типа перевозимого груза. Важнейшая особенность газовозов - система удержания груза. Именно по этим критериям перевозчики сжиженного нефтяного газа делятся на типы.

Встроенные баки:

Это резервуары, которые составляют основную конструктивную часть корабля и подвергаются воздействию нагрузок, приходящихся на конструкцию корпуса. В основном они используются в тех случаях, когда СНГ должен перевозиться в условиях, близких к атмосферным, например - бутан. Это потому, что в этом случае нет требований к расширению или сжатию конструкции резервуара.

Независимые резервуары:

Эти танки являются самонесущими по своей природе и не являются неотъемлемой частью конструкции корпуса.Следовательно, они не влияют на общую прочность балки корпуса. Согласно главе 4 Кодекса IGC независимые резервуары делятся на три типа:

Цистерны типа «А»: Эти резервуары спроектированы с использованием традиционного метода проектирования конструкции судов. В этих цистернах можно перевозить СНГ в условиях, близких к атмосферным, или СПГ. Расчетное давление резервуаров типа А составляет менее 700 мбар. На следующих рисунках показано общее устройство танкера для жидкого метана с резервуарами типа «А».

Рис. 1. Общее расположение метановоза с цистернами типа А.

Общая компоновка судов, работающих на сжиженном нефтяном газе, почти такая же, как и у нефтеналивных судов, с грузовыми танками, расположенными на определенной длине впереди и за миделем, а также механизмами и надстройкой на корме. Бак установлен на носу, чтобы предотвратить попадание на палубу зелени. Балластная вода не может перевозиться в грузовых танках, поэтому пространства для балласта обеспечиваются за счет включения пространств двойного корпуса (обратите внимание на двойной корпус в средней секции), трюмных танков и танков верхнего крыла.

Наиболее примечательной и отличительной особенностью цистерн типа «A» является то, что Кодекс IGC определяет, что цистерны типа «A» должны иметь вторичный барьер для сдерживания любой утечки в течение как минимум 15 дней. Вторичный барьер должен быть полным барьером такой емкости, чтобы его было достаточно, чтобы удерживать весь объем резервуара под любым углом крена. Часто этот вторичный барьер состоит из пространств в корпусе корабля, как показано на рисунке ниже.

Рис. 2: Вторичный барьер для резервуара типа «A».

Здесь может возникнуть один важный вопрос: танк в разрезе миделя кажется неотъемлемой частью корпуса. Почему же тогда этот тип танков попадает в категорию «Независимые танки»? Чтобы найти ответ, необходимо более внимательно изучить способ установки танка в корпусе.

Рисунок 3: Объединение танка типа А с конструкцией корпуса.

На приведенном выше рисунке показано, как конструкция алюминиевого резервуара не интегрирована с внутренним корпусом метановоза посредством какого-либо металлического контакта.Внутренняя обшивка корпуса и алюминиевая обшивка бака разделены слоями, состоящими из дерева, стекловолокна и бальзовых панелей для защиты от внешних температур. Панели из бальзы скреплены фанерой с обеих сторон, которые герметизированы уплотнениями из вспененного ПВХ. Инертное пространство в 2 или 3 мм отделяет внутренний слой стекловолокна от алюминиевой пластины резервуара. Это пространство предназначено для изоляции, а также допускает расширение и сжатие конструкции резервуара. Такой тип несварной сборки делает этот резервуар конструктивно независимым по своей природе.

Цистерны типа «B»: Концепция, лежащая в основе конструкции таких резервуаров, состоит в том, чтобы иметь такую ​​конструкцию, в которой трещина может быть обнаружена задолго до фактического разрушения. Это дает запас времени до фактического отказа. Методы, используемые для проектирования таких резервуаров, включают определение уровней напряжений при различных температурах и давлениях путем первичного анализа, определение усталостной долговечности конструкции резервуара и изучение характеристик распространения трещин. Эта улучшенная конструкция таких танков требует частичного барьера, который мы вскоре рассмотрим.

Наиболее распространенной компоновкой резервуаров типа «B» является сферический резервуар Kvaerner-Moss, как показано ниже на рисунке 4.

Рисунок 4: Сферический резервуар Kvaerner-Moss

Конструкция резервуара имеет сферическую форму и расположена в корпусе корабля так, что только половина или большая часть сферы находится под уровнем главной палубы. Наружная поверхность обшивки резервуара снабжена внешней изоляцией, а часть резервуара выше уровня главной палубы защищена защитным слоем от атмосферных воздействий.Вертикальная трубчатая опора проходит от верхней части резервуара к основанию, в которой находятся трубопроводы и перекладины доступа.

Как видно из схемы, любая утечка в резервуаре может привести к накоплению пролитой жидкости на поддоне для сбора капель под резервуаром. Поддон и экваториальная часть резервуара оснащены датчиками температуры для определения наличия СПГ. Это действует как частичный вторичный барьер для резервуара.

СПГ обычно перевозится в цистернах этого типа. Гибкий фундамент допускает свободное расширение и сжатие в соответствии с тепловыми условиями, и такие изменения размеров не влияют на основную конструкцию корпуса, как показано на рисунке 5.

Рисунок 5: Расширение и сжатие сферических резервуаров.

Преимущества сферических резервуаров Kvaerner-Moss:

  • Обеспечивает пространство между внутренним и внешним корпусом (см. Рис. 4.), что может использоваться для балласта и защиты груза в случае повреждений при боковом столкновении.
  • Сферическая форма позволяет равномерно распределять напряжение, что снижает риск поломки или поломки.
  • Поскольку в конструкции используется концепция «Утечка до отказа», она предполагает и гарантирует, что основной барьер (оболочка резервуара) будет разрушаться постепенно, а не катастрофически.Это позволяет трещине возникать до того, как она распространится, и приведет к окончательному разрушению.

Резервуары типа «C»: Эти резервуары спроектированы как криогенные сосуды под давлением с использованием традиционных кодов сосудов высокого давления, и преобладающим критерием проектирования является давление пара. Расчетное давление для этих резервуаров находится в диапазоне более 2000 мбар. Наиболее распространенными формами этих резервуаров являются цилиндрические и двухлепестковые. Хотя цистерны типа «C» используются как на танкерах для сжиженного нефтяного газа, так и на танкерах для сжиженного природного газа, это преобладающая конструкция танкеров для перевозки сжиженного природного газа.

На следующих рисунках показано расположение цилиндрических и двулопастных резервуаров на виде в миделе. Цилиндры могут быть установлены как вертикально, так и горизонтально, в зависимости от размеров и пространственных ограничений корабля. Обратите внимание на рис. 6, что пространство между двумя цилиндрами становится бесполезным. Из-за этого использование цилиндрических танков - плохое использование объема корпуса. Чтобы обойти это, сосуды высокого давления пересекаются или используются двухлепестковые резервуары (Рисунок 7).

Рис. 6: Горизонтальные цилиндрические цистерны в танкере СПГ.

Рис. 7: Расположение резервуаров Bilobe в танкере СПГ.

Эти типы цистерн не требуют вторичного барьера. Вместо этого, чтобы обнаружить утечку груза из танков, трюмное пространство (см. Рисунок 6) заполняется инертным газом или сухим воздухом. Датчики, размещенные в трюмном пространстве, могут обнаруживать изменение состава инертного газа или сухого воздуха из-за паров топлива, и, следовательно, утечки могут быть обнаружены и предотвращены.Цистерны Bilobe в носовой части корабля сужаются к концу.

Мембранные баки:

В отличие от независимых резервуаров мембранные резервуары являются несамонесущими конструкциями. Их первичный барьер состоит из тонкого слоя мембраны (толщиной от 0,7 до 1,5 мм). Мембрана крепится к внутренней конструкции корпуса через изоляцию, толщина которой может достигать 10 мм в соответствии с Кодексом IMO IGC. Из-за своей несамонесущей природы внутренний корпус выдерживает нагрузки, передаваемые на танк.Таким образом, расширения и сжатия из-за тепловых флуктуаций компенсируются, не позволяя нагрузке восприниматься самой мембраной. Мембранные цистерны в основном используются для грузов СПГ.

Часто бывает два слоя (первичный и вторичный) изоляции и мембраны, размещаемые попеременно. Наиболее распространенными типами резервуаров с мембтаном являются резервуары, спроектированные и разработанные двумя французскими компаниями Technigaz и Gaz Transport. В системе Технигаз используется система из нержавеющей стали, которая сконструирована из гофрированных листов таким образом, что один лист может свободно расширяться или сжиматься независимо от соседнего листа.В системе Gaz Transport используется инвар в качестве первичной и вторичной мембран. Инвар имеет низкий коэффициент теплового расширения, поэтому нет необходимости в гофре. Изоляция обычно выполняется из таких материалов, как армированный полиуретан. В мембранных резервуарах GTT первичная мембрана изготовлена ​​из гофрированного материала SUS 304, а вторичная мембрана - из клееного триплекса. Рисунок 8 иллюстрирует анатомию двухмембранных резервуаров.

Рис. 8: Детали мембранного бака.

Рис. 9: Внутренняя часть (первичная мембрана) мембранного бака на танкере СПГ.(Источник: Википедия)

Вот некоторые из преимуществ мембранных резервуаров:

  • Как правило, они имеют меньшую валовую вместимость, то есть пространство, занимаемое внутри корпуса, меньше для данного грузового объема.
  • По вышеуказанной причине максимальное пространство в трюме можно использовать для удержания груза.
  • Поскольку высота танков над главной палубой значительно меньше по сравнению с танками Moss, мембранные танки обеспечивают обзор с ходового мостика.Это также позволяет более низкую рулевую рубку. Это можно сравнить на рисунках 10 и 11.

Рис. 10: Танкер для СПГ с резервуарами типа Moss. (Источник: Википедия)

Рис. 11. Танкер для перевозки СПГ мембранного типа, строящийся на верфи. Обратите внимание на высоту цистерн над главной палубой и высоту рулевой рубки. (Источник: Википедия)

Системы удержания сжиженного нефтяного газа:

В отличие от СПГ, сжиженный нефтяной газ требует хранения в условиях, отличных от атмосферных.Системы удержания сжиженного нефтяного газа подразделяются на три типа, и каждый баллон с сжиженным нефтяным газом разработан в соответствии с любым из них.

Резервуары с полным давлением:

Пропан, бутан и безводный аммиак перевозятся в цистернах под давлением. Вместимость этих резервуаров обычно составляет менее 2000 кубометров. Обычно это неизолированные цилиндрические сосуды высокого давления, частично расположенные ниже уровня главной палубы. Поскольку это танки типа C, они часто не позволяют полностью использовать подпалубный объем.

Баки с полунапорным или полуохлажденным охлаждением:

Хотя грузы, перевозимые судами с половинным давлением, такие же, как и на судах с полным давлением, объем судов с частично герметичным давлением составляет около 5000 кубических метров. В них используются независимые резервуары типа C, и они изготовлены из обычных марок стали. Внешняя поверхность этих танков изолирована, и на этих судах установлены холодильные установки или установки повторного сжижения для поддержания рабочего давления груза.Наиболее распространенные типы цистерн, используемых для этой цели, - цилиндрические и двухлепестковые.

Резервуары с полным охлаждением:

Газовозы с полным охлаждением имеют вместимость от 10 000 до 1 00 000 кубических метров. Суда меньшего размера используются для перевозки нескольких типов грузов, тогда как суда большего размера предназначены для перевозки одного типа груза по постоянному маршруту. Цистерны, используемые для этой цели, обычно представляют собой призматические цистерны типа «А», которые имеют наклон в верхней части для уменьшения эффекта свободной поверхности и наклон в нижней части для соответствия форме осушительной конструкции.Обычно они разделены в продольном направлении непроницаемой для жидкости перегородкой, чтобы дополнительно уменьшить влияние свободной поверхности. Эти цистерны изготовлены из высокопрочной стали с надрезом, чтобы обеспечить максимальную ударную вязкость при температурах до -48 градусов Цельсия, при которых перевозятся такие грузы, как пропан.

Количество газовозов резко увеличилось за последние десять лет из-за растущей потребности в альтернативном топливе. Обычно это высокоскоростные корабли с прекрасной формой корпуса, что дает возможность для обширных исследований улучшить эффективность корпуса с целью достижения большей энергоэффективности.Также проводится множество исследований для разработки усовершенствованных систем удержания грузов, а концепции смежных бункеровочных систем разрабатываются различными странами, которые открывают для себя широкое использование природного газа. Сегодня не все верфи оснащены оборудованием для проектирования и строительства специализированных судов, таких как танкеры для сжиженного нефтяного газа и СПГ. Это оставляет конструкторам и судостроителям широкие возможности для развития навыков и инфраструктуры, чтобы специализироваться на строительстве этих кораблей.

Отказ от ответственности: Взгляды авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не утверждают, что они точны, и не принимают на себя никакой ответственности за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight

Теги: газовоз

.

Модуляция котла - лучше?

В конструкцию большинства современных котлов заложена степень модуляции. Фото любезно предоставлено Smith Energy-Moss Park Armory

Модуляция котла имеет три преимущества; он снижает потери цикла, снижает износ компонентов и может (но не обязательно, как показано далее в этой статье) привести к более высокому тепловому КПД. Но помимо преимуществ, каково влияние регулирования мощности горения на газовые водогрейные котлы? Когда модуляция котла приводит к снижению КПД и риску повреждения оборудования?

Чтобы понять эти проблемы, необходимо проанализировать, как работает котел, и какие потери связаны с его работой.


Связано: Перечень работ по обслуживанию котла


Основные операции котла: сжигание

Типичный водогрейный котел с предварительным смешиванием предназначен для выработки горячего газа путем сжигания топлива в присутствии воздуха с последующей передачей, насколько это возможно, тепловой энергии этого горячего газа в котловую воду. Котлы оцениваются по их тепловому КПД, который представляет собой просто отношение химической энергии, добавленной к котлу, к энергии, добавленной к котловой воде.По мере того как больше тепла передается от горячего газа в котловую воду, термический КПД увеличивается, а температура выходящего (дымового) горячего газа снижается.
Химическое представление идеального сгорания с природным газом представлено ниже:

2O2 + Ch5 = CO2 + 2h3O

Фактический процесс сгорания приводит к образованию других побочных продуктов или продуктов в концентрациях, отличных от указанных выше. К ним относятся:

  • Воздействие азота в воздухе для горения, которое может привести к образованию оксидов азота (NOx) в горячем газе
  • Несгоревшее топливо, если воздух и топливо не смешаны должным образом или если используется недостаточный воздух для горения
  • Различные концентрации CO, CO2 и 02 в зависимости от количества воздуха, добавляемого в процесс сгорания

Почти все котлы настроены на добавление избыточного воздуха, чтобы обеспечить надлежащее смешивание воздуха с топливом и полное сгорание топлива.Также добавляется избыточный воздух, чтобы предотвратить перегрев горелки, когда пламя находится на поверхности горелки. Более высокие смеси газов и воздуха «выталкивают» пламя сгорания от горелки, тем самым снижая температуру горелки.

Потери котла

Потери энергии котла обычно возникают в результате:

  • Потери в сухом дымоходе (тепло побочных продуктов сгорания на выходе из котла)
  • Энергия водяного пара на выходе из котла
  • Радиационные и другие потери (обычно незначительные по сравнению с первыми двумя)

Когда достаточно тепловой энергии от горячих газов передается котловой воде, общая температура горячего газа опускается ниже точки росы по воде, и часть или вся вода становится жидкой.Энергия, выделяемая при превращении воды из пара в жидкость, улавливается котловой водой, что приводит к значительному повышению эффективности. Каждый фунт воды в горячем газе, преобразованном в жидкость, добавляет 1000 БТЕ в котловую воду.

Потери в сухих дымовых газах и потери водяным паром могут быть легко рассчитаны, если известно количество CO2 или 02 в дымовых газах (это используется для расчета точки росы воды в дымовых газах и определения концентраций продукты горячего газа) и температура дымовой трубы известна.Два примера представлены на рисунках 1 и 2 , где в качестве источника топлива используется природный газ.

Рисунок 1 - это расчет потерь, предполагающий 27-процентный избыток воздуха (соответствует девяти процентам CO2) и температуру дымовых газов 150F. Обратите внимание, что точка росы для газа при этом уровне избыточного воздуха составляет 130,6 градусов - любая температура дымовых газов (и, соответственно, температура котла обратной воды) выше этой точки не приведет к конденсации дымовых газов.Общий КПД котла в установившемся режиме (без учета тепловых и других незначительных потерь), работающего в этот момент, составляет 88,1%.

Рисунок 2 предполагает те же условия, что и Рисунок 1 , однако температура дымовых газов была снижена до 120F. Это приводит к повышению эффективности на 92% или повышению эффективности на 3,9%. Это увеличение происходит из-за дополнительной энергии за счет скрытой теплоты парообразования в воде дымовых газов.

Теплообмен

Теплообменники котла предназначены для оптимизации передачи тепловой энергии горячего газа котловой воде.Количество тепла, переданного в этом процессе, представлено как:

Q = U • A • ∆Tlm

Где:

Q = количество переданного тепла

U = общий коэффициент теплообменника

A = эффективная площадь теплопередачи в теплообменнике

∆Tlm = средняя логарифмическая разница температур входящего / выходящего горячих газов и входящей / выходящей котловой воды.

В этой статье не рассматриваются подробные элементы теплопередачи; скорее, он рассмотрит основные элементы, влияющие на передачу тепла.По сути, любое улучшение U, A или большей разницы температур приводит к большей теплопередаче и более высокой эффективности котла.

Общий коэффициент

U обратно пропорционален сопротивлению теплового потока в теплообменнике (т.е.U = 1 / Сопротивление). Позиции сопротивления тепловому потоку включают:

  • Сопротивление конвективной теплопередаче от горячего газа к слою загрязнения на горячей стороне теплообменника
  • Сопротивление кондуктивной теплопередаче через засорение горячей стороны
  • Сопротивление кондуктивной теплопередаче через материал теплообменника
  • Сопротивление кондуктивной теплопередаче через водные загрязнения
  • Сопротивление конвективной теплопередаче от загрязнения со стороны воды в котловую воду

Для кондуктивной теплопередачи сопротивление определяется теплопроводностью материала (константа) и толщиной материала.Потери конвективного теплообмена менее очевидны, поскольку они регулируются коэффициентом конвективного теплообмена, который зависит от свойств газа / жидкости и характеристик потока. Одним из основных факторов, влияющих на эти коэффициенты, является то, является ли поток турбулентным с большим перемешиванием или ламинарным, когда поток очень однороден. Переход от турбулентного потока к ламинарному потоку может снизить этот коэффициент конвективной теплопередачи в пять или более раз. Это усугубляется тем фактом, что сопротивление конвективной теплопередаче обычно намного больше, чем сопротивление кондуктивной теплопередаче.Из-за этого воздействия большое внимание уделяется проектированию теплообменников для работы с турбулентными потоками воды и газа.

Цикл котла

Последним пунктом в описании основных операций котла является описание типового цикла котла для котла с вентилятором или с положительным давлением. Каждый раз, когда котел приводится в действие, он проходит цикл предварительной продувки для удаления любых остаточных газов в камере сгорания. Это делается из соображений безопасности и достигается путем пропускания воздуха для горения без топлива в течение заданного периода времени.Во время этого процесса тепло передается от горячей котловой воды в теплообменнике к более холодному потоку воздуха для горения. Эта теплопередача представляет собой потерю энергии, но она снова необходима из соображений безопасности. После цикла продувки топливо добавляется к воздуху для горения, смесь зажигается, и котел начинает нормальный режим работы. После выключения котла выполняется дополнительная продувка для удаления любых остаточных газов. Эти процессы продувки являются основной причиной потерь цикла, которые снижают общую эффективность котельной.

Модуляция котла

Почему модуляция? Раньше котлы проектировались только с одним режимом работы - вкл / выкл. Они не были предназначены для стрельбы с любой другой скоростью, кроме их полной номинальной мощности. Когда потребности в отоплении для объекта были меньше, чем мощность котла, котлы подвергались циклическому включению, при котором они включались, удовлетворяли нагрузку и затем отключались. Чем больше разница между тепловой нагрузкой и мощностью котла, тем больше количество циклов котла.

Как упоминалось ранее, чрезмерные циклы котла приводят к потерям цикла, но они также увеличивают общий износ оборудования. Реле и контакты в электрических компонентах могут выдержать ограниченное количество, и эти компоненты необходимо будет заменять с большей частотой, когда возникает чрезмерная цикличность.

По мере того, как в конструкции котлов были внесены новшества, производители начали предлагать блоки с несколькими скоростями горения (многоступенчатое горение), за которыми следовали устройства, которые могли плавно переключаться между фиксированной низкой и высокой скоростью горения.В котлах с вентилятором модуляция достигается за счет уменьшения потока воздуха и газа в котел. Отношение низкой пожарной нагрузки к высокой пожарной способности определяется как способность котла изменяться. Большинство современных дизайнов имеют встроенный уровень модуляции; либо с котельными агрегатами, имеющими соответствующий диапазон регулирования, либо с использованием нескольких двухконтурных котлов.

Когда мы смотрим на уравнение теплопередачи, представленное ранее, модуляция котла означает более эффективную площадь теплопередачи (A) для количества тепла, добавляемого в систему.Этот эффект проиллюстрирован на кривых КПД на рис. 3 .

Объединяя все вместе - влияние высоких скоростей отклонения

Из предыдущих обсуждений следует, что более высокая модуляция котла лучше. Возникает фундаментальный вопрос: не будет ли котел с экстремальным диапазоном регулирования быть намного эффективнее, чем котел с диапазоном изменения 5: 1? Ответ на этот вопрос не обязательно, как показано ниже.

Для достижения экстремального диапазона регулирования котлы с большим диапазоном регулирования настроены на подачу большего количества избыточного воздуха при таких низких скоростях горения, чтобы их горелка оставалась холодной.Этот дополнительный избыток воздуха значительно снижает точку росы воды в дымовых газах, а также изменяет потери в сухих газах. Чтобы проиллюстрировать этот эффект, пример, использованный в , рис. 2 , обновлен, чтобы отразить изменение 20: 1, где 02 установлено на 11 процентов (соответствует 5,6 процента CO2 и 97 процентам избыточного воздуха). Результаты показаны ниже на рис. 4 .

Обратите внимание, что точка росы снижена со 130.От 6 до 117 градусов, и котел больше не находится в диапазоне конденсации. Это представляет собой снижение общей эффективности на 3,7%, и это только начало плохих новостей. При уменьшении общего потока газа при экстремальной модуляции существует вероятность того, что поток газа через теплообменник станет ламинарным из-за значительного уменьшения воздушных потоков. Если так же уменьшить циркуляцию воды в бойлере в соответствии с интенсивностью горения, поток воды со стороны воды также может стать ламинарным. Если первичное сопротивление тепловому потоку возникает из-за конвекции тепла на стороне газа и воды и если одно или несколько из этих сопротивлений увеличиваются в пять раз, то общая производительность теплообменника значительно падает.

Конечным результатом будет повышение температуры дымовых газов и более высокие потери в котле. Есть и другие негативные последствия. Если поток со стороны воды становится ламинарным, температура материала теплообменника повышается. Если он достаточно поднимется, это может вызвать локальное кипение в областях вдоль стенки теплообменника. Поскольку эти пузырьки пара образуют растворенные твердые частицы в котловой воде, они выходят из раствора и прилипают к стенке теплообменника, что приводит к увеличению слоя загрязнения.Этот слой добавляет дополнительное сопротивление тепловому потоку, что способствует большему пропариванию. Если температура становится достаточно высокой, теплообменник выйдет из строя, потому что котловая вода обеспечивает необходимое охлаждение, чтобы защитить его от повреждений.
Последняя важная область воздействия - управление пламенем. Когда в котле используется избыток воздуха, превышающий 50 процентов, это влияет на стабильность пламени сгорания, что может привести к чрезмерным сбоям пламени, ложным отключениям и потерям цикла.

На рынке, однако, высказываются предположения, что потери в установившемся режиме, возникающие из-за высоких скоростей модуляции котла, превосходят потери цикла, которые возникают в модулирующих котлах 5: 1.Johnston Boiler Company опубликовала исследование именно по такому сценарию, в котором подчеркивается, что даже с вытекающими потерями в цикле котел с изменяющимся режимом 4: 1 будет более эффективным, чем идентичный котел, работающий на 10% полного огня1. При снижении эффективности и возможном повреждении котла некоторые производители намеренно ограничивают динамический диапазон своих котлов до 5: 1 и проводят лабораторные испытания, чтобы продемонстрировать истинную эффективность котлов при различных скоростях горения. Это не экстраполированные показатели эффективности с использованием одной точки данных при более высокой скорости стрельбы, а затем расширенные до более низкой скорости стрельбы.Способ действительно узнать, какова эффективность в любом из условий обжига, - это запросить прямые лабораторные результаты в этих рабочих точках и не принимать прогнозируемые или расчетные числа.

Заключение

Реалистичные коэффициенты модуляции котла помогли повысить общий КПД котельной системы за счет снижения потерь в цикле и увеличения теплового КПД, но экстремальный диапазон изменения (выше 10: 1 и выше) может дать противоположный эффект. При разумном проектировании котельной необходимо учитывать фактическую (не экстраполированную) эффективность котла с учетом рабочего диапазона оборудования и согласования ожидаемых нагрузок на установку с правильным выбором размера котла.


Артикул:

1 Johnston Technical Brief, Сравнение эффективности: 4: 1, изменение размера и 10: 1, Johnston Boiler Company, 17 марта 2003 г.

.

Паровой котел на сжиженном газе / угле

паровой котел на сжиженном газе / угольном газе

Конструктивная структура

1, в футеровке котла используется трехходовая трубчатая конструкция с вертикальной водопроводной трубой, передовая на международном уровне

2, паровой котел и горелка в целом дизайн,.

3, Встроенный внутренний сепаратор пара

Advantage

Автоматическая интеллектуальная система управления с ЖК-дисплеем

1., Безопасность и наука: с предохранительным клапаном, регулятором давления, устройством контроля уровня воды,

2, устройством защиты нескольких цепей, безопасным и надежным.

3, Выберите импортную итальянскую горелку, более полную, более стабильную работу и низкий уровень шума.

4, Высококачественные детали используют электроприбор Delixi известного отечественного бренда

5, Высококачественный пар быстро

6, Простота установки и эксплуатации

7, тепловой КПД котла выше 93%

8, Качество продукции обеспечивается : Гидравлическая соска, рентген, неразрушающий контроль.

Как пользоваться?

1, Построить котельную

2, Соединительные трубы

3, Мощность подключения

4, Рабочий котел

Приложение

Отопление зданий, химическая обработка, здравоохранение, прачечная, промышленность, обработка бумаги, текстиль

параметр продукта

Spec Тип LSS0.3-0,8-Y / Q LSS0,5-0,8-YQ LSS1,0-0,8-Y / Q
Номинальное испарение (кг / ч) 300 500 1000
Тепловой КПД ≥93 ≥93 ≥93
Номинальное давление (МПа) 0,8 0,8 0,8
Температура пара (° c) 175 175 175
Топливо 0 # Дизель (кг / ч) 18.3 30,5 61
Угольный газ (Нм 3 / ч) 51,0 85,0 170
Природный газ (Нм 3 / ч) 22,8 38,0 76
Сжиженный газ (кг / ч) 17,1 28,5 57
Размер (мм) 1150 * 1150 * 2400 1350 * 1350 * 2650 1480 * 1480 * 3100
Калибр пара DN40 DN40 DN50
Калибр на выходе слива DN25 DN25 DN40
Калибр на входе DN25 DN25 DN25

Подробная информация

Пример клиента

9 0003

.

Смотрите также