(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Как повысить кпд газового котла росс


Как можно увеличить КПД котла

После покупки отопительного оборудования потребители зачастую заинтересованы в том, как можно увеличить КПД котла. Максимально эффективно работать оборудованию позволяет соблюдение рекомендаций производителя. Но часто даже при правильной эксплуатации возникают ситуации, которые приводят к не экономной работе приобретенного оборудования.

Основные причины, по которым снижается эффективность отопительных агрегатов

Чтобы понять как увеличить КПД котла, изначально необходимо разобраться, какие нюансы в работе на него влияют. Главных факторов два:

  1. Объемы тепловой энергии, которую получает вода или другой теплоноситель в результате сжигания топлива.
  2. Тепловые потери – чем меньше тепла теряет котел, тем с большим КПД он работает. Обычно теплопотери растут по причине неправильного сжигания газа или твердого топлива. Но также тепло теряется из-за неравномерного распределения тепловой энергии.

Кроме этого, эффективность работы оборудования зависит от соответствия вида используемого топлива топочной камере, в которой оно сжигается. Еще на данный коэффициент влияет правильность организации системы отопления, нагрузка на нее, а также степень износа отопительного оборудования.

Почему возникают теплопотери

Чтобы добиться повышения эффективности работы необходимо обязательно снизить теплопотери. Они возникают по причине:

  1. Физического недожога – существенную роль играет избыточный воздух, который присутствует в котле, а также температура отработанных газов. Чем больше количество воздуха, тем хуже функционирует оборудование. Особенно это ощутимо, когда оборудование работает на полную мощность при очень низких температурах. Потеря теплоты в этом случае самая существенная и составляет примерно 20%.
  2. Механический недожог – данный критерий характерен только для твердотопливного оборудования. Топливо не сгорает должным образом, что влечет за собой образование золы. Такие теплопотери незначительные и равны 1-3%.
  3. Химический недожог – образуется по причине дефицита воздуха в камере сгорания. При его дефиците происходит неполное сгорание газа, и он просто уходит через дымоход. Вследствие этого образуется окись угарного газа. От ее количества зависит размер теплопотерь. В среднем, таким образом теряется около 7% тепла.

Также снижение КПД могут вызвать потери через стенки радиаторов. Для устранения этих теплопотерь выполняется теплоизоляция отопительных приборов.

Как повысить коэффициент полезного действия котла?

Предлагаем вам ознакомиться с рекомендациями, которые направлены на повышение продуктивности работы системы:

  1. Если причина недостаточно эффективной работы кроется в площади отбора тепловой энергии, для ее увеличения устанавливается турбулизатор. Его размещают между теплообменником и топочной камерой.
  2. Чтобы устранить теплопотери, возникающие вследствие химического недожога, необходимо грамотно настроить работу оборудования. Рекомендуем доверять эту процедуру только специалисту. Также для снижения тяги рекомендуется установить ее ограничитель. Его установка позволяет регулировать сечение дымоходной трубы. Монтаж ограничителя тяги особенно необходим при сильно низких температурах снаружи.
  3. Для снижения теплопотерь, возникающих из-за физического недожога, и поддержания нормальной тяги необходимо своевременно удалять сажу, которая образовывается на жаровых трубах. Также необходимо удалять накипь, образующуюся на отопительном контуре. Регулярная очистка этих элементов позволяет устранить физические теплопотери.
  4. Поддерживать должное состояние труб системы отопления. Металлические трубы могут «зарастать» изнутри вследствие грязевых отложений. С ПВХ-трубами такого не происходит, но в профилактических целях рекомендуется периодически выполнять продувку отопительной системы. Полностью сливать теплоноситель не стоит. Так как при поступлении неочищенной воды, ее нагревании и прохождении через трубы, выпадает осадок. Из-за этого на стенках трубопроводов образуется накипь.
  5. Отрегулировать заслонку поддувала. Для этого необходимо использовать термометр. Заслонку устанавливают в то положение, при котором достигается максимальное значение температуры теплоносителя.
  6. Поддерживать нормальную тягу. Во избежание ее ухудшения требуется регулярное очищение дымоотводящей трубы от продуктов сгорания. А также нельзя допускать образования копоти в камере сгорания. Из-за большого количества копоти увеличивается объем потребляемого топлива.
  7. Для повышения эффективности котельного оборудования, работающего на газовом топливе, также можно выполнить монтаж коаксиального дымохода. У традиционных дымовых труб есть очевидный недостаток – они зависимы от внешних условий. Коаксиальная отводящая труба отличается стойкостью к скачкам температуры, обеспечивает поддержание заданных температурных параметров в помещении, экономит газ. Конструктивно коаксиальный дымоход состоит из двух труб, которые имеют разный диаметр. Одна труба используется для транспортировки продуктов сгорания, вторая – воздуха, который насыщен кислородом.

Устранить эти причины снижения КПД котлов реально своими руками без вызова специалистов.

Помощь специалистов

Выше мы рассмотрели почему снижается КПД котлов и способы его повышения. Если вам не хватает знаний и опыта работы с котлами, рекомендуем обратиться в компанию «Профтепло». Специалисты выполнят диагностику и примут меры, необходимые для эффективного функционирования отопительной системы. Чтобы воспользоваться услугами, свяжитесь с нами по контактному номеру телефона +7 (4842) 75 02 04 или закажите «Обратный звонок». Услуги предоставляются в Калуге.

Эффективность сгорания и избыток воздуха

Для обеспечения полного сгорания используемого топлива в камеры сгорания подается избыточный воздух. Избыточный воздух увеличивает количество кислорода для сгорания и сгорания топлива.

  • , когда топливо и кислород из воздуха находятся в идеальном балансе - считается, что сгорание составляет стехиометрических

Эффективность сгорания увеличивается с увеличением избыточного воздуха - до тех пор, пока потери тепла в избыточном воздухе не станут больше, чем выделяемое тепло за счет более эффективного сгорания.

Типичный избыток воздуха для достижения максимально возможной эффективности для некоторых распространенных видов топлива:

  • 5-10% для природного газа
  • 5-20% для мазута
  • 15-60% для угля

Двуокись углерода - CO 2 - является продуктом сгорания, и содержание CO 2 в дымовых газах является важным показателем эффективности сгорания.

Оптимальное содержание диоксида углерода CO 2 после сжигания составляет примерно 10% для природного газа и примерно 13% для более легких масел.

Нормальная эффективность сгорания природного газа при различных комбинациях температуры избыточного воздуха и дымовых газов указана ниже:

1) «Чистая температура дымовой трубы» - это разница температур между температурой дымовых газов внутри дымохода и комнатной температурой вне горелки.

Потери дымовых газов при сжигании нефти

Потеря эффективности дымовых газов, связанная с

  • разницей температур дымовых газов и приточного воздуха
  • CO 2 Концентрация дымовых газов

при сжигании мазута показана ниже :

Пример - Сгорание масла и потери тепла в дымовых газах

Если

  • , разница температур дымовых газов на выходе из котла и температуры окружающей среды составляет 300 o C, и
  • диоксид углерода, измеренный в дымовых газах, составляет 10% - тогда,

из диаграммы выше

  • , потери дымовых газов могут быть оценены примерно в 16% .
.

Насколько эффективен конденсационный котел? (2020)

В чем разница между обычным котлом и конденсационным котлом?

Выбор лучшего типа конденсационного котла для ваших индивидуальных нужд может быть трудным. Однако получение правильной информации может значительно упростить процесс принятия решений и предоставить вам лучшую цену на конденсационный котел. Вот почему в этой статье вы получите ускоренный курс по котлам, в том числе о том, как найти лучших конденсационных котлов типов и поставщиков котлов .

В обычных системах отопления (например, в газовых котлах) нагретые газы проходят через поверхность теплообмена котла, передавая генерируемую энергию в систему распределения тепла, такую ​​как полы с подогревом и радиаторы. После этого дымовые газы выбрасываются в атмосферу через дымоход котла.

Таким образом, определенное количество тепла теряется, потому что вместе с газами выталкивается значительное количество пара, который образуется в процессе горения.Благодаря этому выпускаемый пар несет в себе неиспользованное количество энергии испарения.

Здесь конденсационный котел становится экономичным выбором smart , environmental и по сравнению с обычными котлами, поскольку они способны преобразовывать энергию испарения в тепло.

Просто заполнив свои личные предпочтения в контактной форме в начале этой страницы, вы можете получить до четырех предложений от лучших поставщиков для ваших индивидуальных потребностей.Это бесплатно и без обязательств .

Подробнее о конденсационных котлах

Конденсационные котлы могут обеспечить КПД 90%

Конденсационный котел не только хороший вариант, если вы беспокоитесь о своем углеродном следе, но производители конденсационных котлов также заявляют, что КПД их продукции может достигать 98%. Как правило, КПД обычных котлов может достигать 70-80%.

Эти высокоэффективные котлы в значительной степени обязаны преобразованием тепла своей камере сгорания. Принцип их работы заключается в том, что теплообменник отбирает не только тепло, возникающее при сгорании топлива, но также тепловую энергию, получаемую при конденсации водяного пара, и передает ее в систему отопления дома.

Используя вышеприведенную терминологию, можно сказать, что конденсационные котлы имеют самую высокую теплотворную способность с точки зрения тепловой мощности, тогда как обычные газовые или электрические котлы обеспечивают самую низкую теплотворную способность.Следовательно, за счет конденсации конденсационный котел может обеспечить дополнительных от 10% до 15% КПД .

Чтобы количественно определить разницу между самой низкой и самой высокой теплотворной способностью конденсационного котла, важно принять во внимание вид топлива , на котором работает котел. Для природного газа эта разница составляет около 11%. Это означает, что КПД котла может достигать 90-91% при полной конденсации (80% от сжигания топлива и 11% от конденсации пара).

В конденсационном котле высокопроизводительный теплообменник выделяемые газы охлаждаются до температуры, практически равной температуре воды из обратного контура. Следовательно, коэффициент полезного действия приближается к отметке 91% и, следовательно, почти достигает физических ограничений котла.

Степень, в которой конденсационный котел может полностью использовать тепловую энергию, образующуюся в результате конденсации, зависит в первую очередь от заданной температуры системы отопления.

Чем ниже температура воды, поступающей в конденсатор, тем эффективнее будет процесс охлаждения газа. Впоследствии эффект конденсации можно использовать в полной мере. Таким образом, если вы хотите улучшить общую производительность вашей системы отопления, важно придать большее значение вопросу , чтобы максимально увеличить эффект конденсации в вашем котле.

В этой таблице обобщена информация о затратах на конденсацию для различных типов котлов.Это даст вам лучшее представление о КПД конденсационного котла с точки зрения того, что может отображаться в вашем счете за электроэнергию.

Тип котла по цене и КПД
Тип котла Квартира Смежный дом Отдельно стоящий КПД
Газовый тяжеловес £ 790 £ 1,210 £ 1,720 55%
Старый газовый облегченный £ 670 £ 1,020 £ 1,450 65%
Новые без конденсации £ 580 £ 850 £ 1,210 78%
Новая конденсационная £ 450 £ 740 £ 1,050 92%

* Источник: Sedbuk

Как работает конденсационный котел?

Принципы работы конденсационного котла известны уже сто лет, но использование его стало возможным только недавно.Это связано с тем, что производители конденсационных котлов теперь могут использовать технологические достижения в области конструкции из нержавеющей стали и коррозионно-стойких сплавов. Но как работают конденсационные котлы?

При охлаждении водяные пары внутри котла превращаются в жидкость в процессе конденсации. Это высвобождает определенное количество тепловой энергии.

Конденсация котла происходит в специально разработанном теплообменнике , который поглощает тепло и передает его в систему отопления.В то время как в обычном котле цель состоит в том, чтобы избежать процесса конденсации, в конденсационном котле этот же процесс необходим для производства тепла.

Количество тепла, которое может быть произведено при сжигании единицы топлива, включая тепло, выделяемое при конденсации пара, называется наивысшей теплотворной способностью. Такое же количество произведенного тепла без учета тепловой энергии, возникающей в результате конденсации, называется наименьшей теплотворной способностью.

Подробнее о механике конденсационного котла

В конденсационных котлах

рядом с теплообменником установлен встроенный вентилятор, работающий со спидометром.В связи с этим конденсационные котлы имеют закрытую камеру сгорания , соединенную с коаксиальным дымоходом, через который отходят дымовые газы. Контроль скорости вращения вентилятора помогает поддерживать оптимальную степень сгорания воздуха и газа. Чтобы свести к минимуму потерю тепла дымовыми газами, важно, чтобы теплообменник позволял конденсацию водяного пара.

Процесс конденсации достигает своего пика, когда поверхность теплообменника равна или ниже температуры точки росы .Температура точки росы - самая надежная единица измерения влажности и комфорта воздуха. В нормальных условиях точка росы природного газа составляет около 57 градусов Цельсия. Следовательно, чтобы котел работал в конденсационном режиме , температура теплоносителя в обратном контуре не должна превышать 57 градусов Цельсия.

Если вышеуказанные условия не будут достигнуты, то КПД конденсационного котла снизится. Даже в этой ситуации котел все равно будет на 4-5% эффективнее , чем обычный котел.

Чем выше КПД (COP) конденсационного котла, тем ниже будет температура в системе отопления. Таким образом, конденсационный котел будет более эффективным, если он будет совмещен с водяным теплым полом с температурой подачи от 40 до 45 градусов Цельсия.

Поскольку не существует рекомендуемой минимальной температуры теплоносителя, котел, подключенный к системе теплого пола, может работать без специальных устройств для понижения температуры .Однако это применимо только для полов большой площади и только в том случае, если система отопления не сильно колеблется.

Некоторые практические рекомендации по эксплуатации конденсационных котлов

  • Установить котел со специально разработанными системами низкотемпературного отопления (желательно не выше 60/40 ° C, или максимум 70/50 ° C)
  • Используйте только пластмассовые дымоходы или керамические (желательно у специализированных дилеров / производителей)

Используя конденсационный котел, вы улучшите общий уровень комфорта, обеспечиваемый вашей системой отопления, и снизите уровень потребления газа на 15-20% .

Какие типы конденсационных котлов самые лучшие?

Существует два основных типа конденсационных котлов: системных котлов и комбинированных котлов . Системный котел - хороший выбор для больших домов или домов с низким давлением воды. Комбинированный котел - идеальный выбор для домов, где требуется отопление по запросу.

При этом оба типа конденсационных котлов могут быть разных форм и размеров. Вот обзор различных типов:

  • Настенные котлы : Этот тип конденсационных котлов, который иногда также называют навесными котлами, очень удобен из-за их меньшего размера и потому, что они могут быть установлены вместе с модульными котлами.
  • Напольные котлы : Котлы этого типа, также называемые напольными или напольными котлами, крупнее настенных котлов и могут производить больший объем горячей воды.
  • Одноконтурные котлы : Система трубопроводов представляет собой одиночный замкнутый контур, что означает, что имеется единственная основная подводящая вода, по которой вода входит и выходит из котла. Риск этого типа отопительной установки заключается в том, что, если он не сбалансирован должным образом, он будет нагревать дом неравномерно в зависимости от контура горячей воды.
  • Двухконтурные котлы : Этот тип котельной системы имеет два отдельных трубопровода, один из которых отводит нагретую воду от котла и нагревает дом, а второй направляет воду к котлу для повторного нагрева. Этот тип котла правильно сбалансирован и может одинаково обогреть весь дом.

Найдите лучшие предложения котлов

Может быть трудно сделать выбор между всеми этими разными типами котлов, особенно если взвесить преимущества большей оплаты за покупку.Хорошая вещь с конденсационными котлами состоит в том, что, хотя их стоимость может быть выше в самом начале, инвестиции окупаются вовремя за счет экономии денег на счетах за электроэнергию.

Если вы решили купить котел, но не уверены, какой тип лучше всего подходит для ваших нужд, мы готовы помочь. Просто заполните форму на этой странице, указав свои личные предпочтения и информацию, и мы предоставим вам до четырех разных поставщиков .Услуга бесплатно , без обязательств , и занимает всего минут .

.

Конденсационные котлы | Building America Solution Center

Сертифицированные дома ENERGY STAR, версия 3 / 3.1 (Rev.09)

Эталонный дизайн-дом ENERGY STAR - это набор характеристик эффективности, смоделированных для определения целевого показателя ENERGY STAR ERI [индекс энергоэффективности] для каждого дома, проходящего сертификацию. Поэтому, хотя перечисленные ниже функции не являются обязательными, если они не используются, для достижения цели ENERGY STAR ERI потребуются другие меры. Кроме того, обратите внимание, что Обязательные требования для всех сертифицированных домов, Приложение 2 [см. Список ниже], содержат дополнительные требования, такие как общие пределы утечки в воздуховоде, минимально допустимые уровни изоляции и минимально допустимые характеристики оконного проема.Поэтому EPA рекомендует партнерам ознакомиться с документами, приведенными в Приложении 2, прежде чем выбирать меры.

Обратите внимание, что эффективность HVAC в эталонном дизайне для версии 3.1 отличается от эффективности для версии 3.0. Пожалуйста, ознакомьтесь с графиком внедрения сертифицированных домов ENERGY STAR для получения информации о версии программы, которая в настоящее время применима в вашем штате.

Приложение 2 требований национальной программы для домов, сертифицированных ENERGY STAR, версия 3 / 3.1 (Ред. 09) требует, чтобы дома заполняли следующие контрольные списки:

Полевой контрольный список национального оценщика

Система HVAC.
10. Приборы для сжигания.
10.1 Печи, бойлеры и водонагреватели, расположенные в пределах давления в доме, имеют механическую или прямую вентиляцию. Альтернативы в сноске 57. 55, 56, 57

Сноска 57) Естественно спроектированное оборудование разрешено в пределах границ давления в доме в климатических зонах 1-3, если оценщик следовал разделу 802 стандартов RESNET, включая ANSI / ACCA 12 QH-2014, приложение A, разделы A3 (испытание на угарный газ) и A4 (Испытание на разгерметизацию для зоны сгорания) и подтвердили, что оборудование соответствует ограничениям, определенным в пределах.

Дом DOE с нулевым потреблением энергии (Версия 07)

Приложение 1 Обязательные требования.
Приложение 1, пункт 1) Сертифицировано в рамках программы сертифицированных домов ENERGY STAR или программы строительства новых многоквартирных домов ENERGY STAR.

Приложение 2 Дом DOE с нулевым потреблением энергии Целевой дом.
Программа Zero Energy Ready Home Министерства энергетики США позволяет строителям выбирать предписывающий или производительный путь. Согласно предписаниям DOE Zero Energy Ready Home, строители должны соответствовать или превосходить минимальную эффективность HVAC, указанную в Приложении 2 требований национальной программы, как показано ниже.Путь производительности DOE Zero Energy Ready Home позволяет строителям выбирать индивидуальную комбинацию мер для каждого дома, которая эквивалентна по производительности минимальному индексу HERS смоделированного целевого дома, который соответствует требованиям Приложения 2, а также обязательным требованиям Zero Дом, готовый к использованию энергии, экспонат 1.

2009 , 2012 , 2015 и 2018 Международный жилищный кодекс (IRC)

Соблюдайте все соответствующие разделы применимого Международного жилищного кодекса, включая соответствующие разделы Главы 13: Общие требования к механическим системам, Главы 14: Отопительное и охлаждающее оборудование, Главы 20 Котлов и водонагревателей, Главы 21 Гидравлические трубопроводы, Главы 22 Специальные трубопроводы и Системы хранения и Глава 24 Топливный газ.

Модернизация: 2009 , 2012 , 2015 и 2018 IRC

Раздел N1101.3 (Раздел N1107.1.1 в IRC 2015 и 2018). Дополнения, изменения, обновления или ремонтные работы должны соответствовать положениям этого кодекса, не требуя, чтобы неизменные части существующего здания соответствовали этому кодексу. (См. Код для дополнительных требований и исключений.)

Приложение J регулирует ремонт, реконструкцию, переделку и реконструкцию существующих зданий и предназначено для поощрения их дальнейшего безопасного использования.

2009 , 2012 , 2015 и 2018 Международный механический кодекс (IMC)

Соблюдайте все соответствующие разделы. Примечание. В главе 2 «Определения» определены категории устройств для сжигания в зависимости от типа вентиляции.

Международный кодекс энергосбережения (IECC) 2009 г.

403.1 Каждая система отопления и охлаждения должна иметь свой собственный термостат.

403.2 Воздуховоды - Изолируйте приточные каналы на чердаках как минимум до R-8 и всех других каналов как минимум до R-6.Герметичность воздуховода проверяют, как описано в 403.2.2 Уплотнение.

403.3 Трубопроводы механической системы, способные пропускать жидкости> 105 ° F или <55 ° F, должны быть изолированы по крайней мере до R-3.

403.6 Размеры отопительного оборудования должны соответствовать разделу M1401.2 Международного жилищного кодекса.

2012 IECC

R403.1 Каждая система отопления и охлаждения должна иметь свой собственный термостат. Если основная система отопления представляет собой печь с принудительной подачей воздуха, по крайней мере, один термостат должен быть программируемым.

403.2 Воздуховоды - Изолируйте приточные каналы на чердаках как минимум до R-8 и всех других каналов как минимум до R-6. Герметичность воздуховода проверяют, как описано в 403.2.2 Уплотнение. Воздухообрабатывающий агрегат должен иметь обозначение производителя, показывающее, что утечка воздуха составляет не более 2% от расчетного расхода воздуха при испытании в соответствии с ASHRAE 193.

R403.3 Трубопроводы механической системы, способные пропускать жидкости> 105 ° F или <55 ° F, должны быть изолированы по крайней мере до R-3. Изоляция трубопроводов, подверженная воздействию погодных условий, должна быть защищена от повреждений, вызываемых солнечным светом, влагой, оборудованием и ветром.Защита не может быть обеспечена липкой лентой.

403.6 Оборудование для обогрева и охлаждения должно иметь размеры в соответствии с Руководством S ACCA на основании нагрузок на здание, рассчитанных в соответствии с Руководством J ACCA или другими одобренными методами расчета отопления и охлаждения.

2015 и 2018 IECC

403.1 Каждая система отопления и охлаждения должна иметь свой собственный термостат. Если основная система отопления представляет собой печь с принудительной подачей воздуха, по крайней мере, один термостат должен быть программируемым.

Раздел 403.3.1 Изоляция (предписывающая). Приточные и возвратные каналы на чердаках имеют изоляцию не менее R-8, если диаметр 3 дюйма и более, или R-6, если диаметр менее 3 дюймов. Все остальные воздуховоды имеют изоляцию не менее R-6, если диаметр 3 дюйма или более, и R-4,2, если диаметр менее 3 дюймов. Герметичность воздуховода проверяется в соответствии с описанием в R403.3.2 Уплотнение. Воздухообрабатывающий агрегат должен иметь обозначение производителя, показывающее, что утечка воздуха составляет не более 2% от расчетного расхода воздуха при испытании в соответствии с ASHRAE 193.

R403.4 Трубопроводы механической системы, способные пропускать жидкости> 105 ° F или <55 ° F, должны быть изолированы по крайней мере до R-3. Изоляция трубопроводов, подверженная воздействию погодных условий, должна быть защищена от повреждений, вызываемых солнечным светом, влагой, оборудованием и ветром. Защита не может быть обеспечена липкой лентой.

403.7 Размеры нагревательного оборудования должны соответствовать Руководству ACCA S и J.

Модернизация: 2009 , 2012 , 2015 и 2018 IECC

Раздел R101.4.3 (Раздел R501.1.1 в IECC 2015 и 2018). Дополнения, изменения, обновления или ремонтные работы должны соответствовать положениям этого кодекса, не требуя, чтобы неизменные части существующего здания соответствовали этому кодексу. (См. Код для дополнительных требований и исключений.)

Стандарты американских подрядчиков по кондиционированию воздуха (ACCA)

ACCA Manual S. Выбор бытового оборудования, ANSI / ACCA 3-Manual S-2004, предоставляет информацию о том, как выбрать и рассчитать нагревательное и охлаждающее оборудование для соответствия ручной нагрузке J в зависимости от местного климата и условий окружающей среды на строительной площадке.Руководство S охватывает стратегии определения размеров для всех типов охлаждающего и нагревательного оборудования, а также исчерпывающие данные производителей о производительности по ощутимой, скрытой или тепловой мощности для различных условий эксплуатации.

Руководство ACCA D: Системы воздуховодов для жилых помещений , Руководство ANSI / ACCA 1-Руководство D-2011, содержит признанные ANSI принципы определения размеров воздуховодов и расчеты, применимые ко всем материалам воздуховодов; рабочая точка системы (подача куб. футов в минуту и ​​внешнее статическое давление) и размер воздуховодов для односкоростных и многоскоростных (ECM) нагнетателей; способ определения влияния трения в воздуховоде и падения давления в фитинге на производительность вентилятора и подачу воздуха; и данные эквивалентной длины.

Руководство ACCA J: Расчет нагрузки на жилые дома , 2-руководство ANSI / ACCA J-2011, содержит информацию для расчета нагрузок на отопление и охлаждение для определения размеров оборудования для частных домов на одну семью, небольших многоквартирных домов, кондоминиумов, таунхаусов, и промышленные дома.

Стандарт ACCA 5: Спецификация установки качества HVAC , ANSI / ACCA 5 QI-2010, детализирует признанные на национальном уровне критерии правильной установки бытовых и коммерческих систем HVAC, включая печи с принудительной подачей воздуха, бойлеры, кондиционеры и тепловые насосы.Стандарт охватывает аспекты проектирования, установки и распределения систем, а также необходимую документацию. Руководство для техников по качественной установке, выпущенное ACCA, объясняет Спецификацию качественной установки (QI) HVAC и предоставляет подробные процедуры для шагов, которые технические специалисты должны выполнить, и задокументировать, чтобы продемонстрировать соответствие Спецификации QI HVAC.

Стандарт 9 ACCA: Протоколы проверки качества установки HVAC, ANSI / ACCA 9 QIVP-2009, определяет протоколы для проверки установки систем HVAC в соответствии со Стандартом 5 ACCA.Протоколы служат руководством для подрядчиков, проверяющих и администраторов, которые участвуют в усилиях по проверке с использованием независимых объективных и квалифицированных третьих сторон, чтобы гарантировать, что установка HVAC соответствует требованиям Стандарта 5.

Национальный кодекс топливного газа (NFPA-54 2015)

Продукты сгорания из газовой печи (без конденсации) выводятся из здания с помощью специальных типов вентиляционных труб, изготовленных из различных материалов в зависимости от температуры дымовых газов, как указано в ANSI Z223.1, Национальный кодекс по топливному газу (NFPA-54 2012), «Таблица 12.5.1. Тип используемой системы вентиляции». В таблице 2 показаны соответствующие вентиляционные материалы для бытовых вентилируемых устройств сжигания, взятые из таблицы 12.5.1 NFPA.


Таблица 2. Допустимые типы вентиляции для различных типов устройств для сжигания, выдержки из NFPA 54 2012, Национального кодекса топливного газа, T.

Консультации - Специалист по спецификациям | Котельные системы: экономика и эффективность

При проектировании системы водяного отопления все компоненты должны работать вместе, чтобы достичь максимальной эффективности системы при минимальных первоначальных затратах.

На водяное отопление приходится от 40% до 50% рынка, и, хотя котлы без конденсации используются в течение десятилетий, а инженеры и операторы установок знают, как их проектировать, определять, обслуживать и эксплуатировать, популярность конденсационных котлов неуклонно растет. за прошедшие десять дней.По данным Института кондиционирования, отопления и охлаждения, только в 2011 году продажи выросли на 20% по сравнению с предыдущим годом. Это связано с тем, что сезонный КПД, который представляет собой общую эффективность котла за весь сезон, для сегодняшних котлов без конденсации составляет примерно от 70% до 75% по сравнению с 84% до 92% для новых конденсационных котлов.

Но добиться такой высокой эффективности в полевых условиях - непростая задача. Компоненты и конфигурация системы, температура наружного воздуха, размер оборудования и поддержка производителя - все это определяет эффективность котельной системы в режиме реального времени.

От традиционных котлов без конденсации до современных конденсационных котлов и гибридных конфигураций, в которых используются как конденсационные, так и неконденсирующие котлы, у специалиста есть ряд вариантов при выборе правильной системы водяного отопления для каждого применения.

Котлы без конденсации

Традиционный котел без конденсации должен работать без конденсации дымовых газов внутри сосуда высокого давления. Это может быть котел морского типа Scotch (часто называемый «жаротрубным котлом»), гибкая водопроводная труба, топка или чугун.Эти котлы используются в коммерческих, медицинских и образовательных учреждениях для отопления и оцениваются по мощности котла, при этом одна единица мощности котла равна 33 475 БТЕ / час. Котлы без конденсации обычно работают на природном газе в качестве основного топлива и мазуте №2 в качестве вторичного топлива.

Коррозия на стороне возгорания возникает, когда дымовые газы охлаждаются ниже точки росы и вступают в контакт с сосудом высокого давления из углеродистой стали. Во избежание коррозии системы отопления должны быть спроектированы таким образом, чтобы обеспечивать минимальную температуру возвратной воды в котел.(Примечание: важно проверить температуру обратной воды в документации производителя, чтобы избежать коррозии.) Все нагревательные компоненты должны быть выбраны для работы с минимальной температурой подаваемой воды 170 F, предполагая, что перепад температур в линиях подачи и обратной воды 20 F .

Котлы конденсационные

Хотя конденсационные котлы приобрели популярность с момента их дебюта на рынке США более десяти лет назад, их производительность в ближайшие годы будет улучшаться.Инженеры, определяющие их, могут выбирать из стольких разных производителей с разным дизайном и качеством материалов, что иногда им может быть трудно определить конденсационные котлы, которые должны быть одинаковыми по конструкции и конструкции в процессе конкурентных торгов. При выборе конденсационных котлов можно задать следующие вопросы: Какие виды технического обслуживания доступны инженерам предприятия? Как компоненты соединяются? Насколько легко будет заменить эти детали по мере необходимости для поддержания оборудования и желаемой эффективности? Могут ли все указанные котлы работать на общем дымоходе? Совместим ли главный контроллер на всех указанных котлах с BAS?

В то время как конденсационные котлы в настоящее время имеют ограниченную теплопроизводительность по сравнению с неконденсирующими котлами, производители продолжат улучшать эту функцию в ближайшие годы, и по мере совершенствования технологии конденсационный котел станет лучшим выбором для систем водогрейных котлов в будущем.

Конденсационные котлы работают, позволяя водяному пару дымовых газов менять фазу и конденсироваться из продуктов дымовых газов. Фазовый переход происходит на поверхностях нагрева теплообменника, обеспечивая дополнительную энергию, в то время как скрытое тепло передается воде внутри теплообменника и, следовательно, увеличивает эффективность котла. Конденсационные котлы должны быть изготовлены из коррозионно-стойких материалов по всей камере сгорания и теплообменнику.

На рис. 1 из главы 31 руководства ASHRAE 2008 г., посвященной котлам, показано влияние температуры воды на входе на КПД котла, точку росы и диапазон конденсации.По мере снижения температуры обратной воды в котел КПД котла увеличивается.

За последнее десятилетие большое количество производителей разработали новые котлы, которые могут работать в конденсационном режиме и, следовательно, обеспечивать более высокий КПД. Эти котлы могут быть жаротрубными, водотрубными, чугунными или алюминиевыми.

Первая стоимость конденсационных котлов выше, чем у традиционных неконденсатных котлов. Поэтому задача, стоящая перед проектировщиком, состоит в том, чтобы обеспечить температуру обратной воды в котел ниже 130 F; в противном случае КПД котла падает, и конденсационный котел работает в режиме без конденсации.

Как показано на Рисунке 1, при температуре обратной воды системы 130 F конденсационные котлы имеют КПД примерно 87%, но этот КПД может достигать 98% при температуре обратной воды 60 F. В дополнение к увеличению котла КПД, более низкая температура подаваемой и обратной воды также снизит тепловые потери в контуре трубопроводов, а в условиях низкой нагрузки управляемость можно улучшить за счет более высоких галлонов в минуту на регулирующих клапанах.

Конденсат, образующийся как в котле, так и в трубопроводе дымовых газов с новыми конденсационными котлами, следует удалять в соответствии с местными нормами и правилами.Условия отвода конденсата в общественные канализационные сети определяются местными властями. Обычно в дренажную трубу следует добавлять систему нейтрализации, чтобы повысить pH конденсата. Средство нейтрализации следует периодически заменять по мере необходимости.

На рис. 2 показана система обогрева, обслуживающая змеевики системы кондиционирования воздуха, змеевики повторного нагрева с регулируемым объемом воздуха (VAV) и панели лучистого отопления. Система включает четыре конденсационных газовых котла, соединенных параллельно, каждый со специальным насосом постоянного объема в составе первого контура.Вторичный контур состоит из двух насосов, каждый с частотно-регулируемым приводом (VSD), воздухоотделителем и расширительным баком.

Насколько конденсационные котлы вписываются в конструкцию котельных систем и работают в конденсационном режиме, зависит от температуры обратной воды. Следовательно, инженер-конструктор должен выбирать потребителей тепла таким образом, чтобы система могла выдерживать дневную расчетную нагрузку от 140 до 150 F. Однако это увеличивает стоимость проекта, и проектировщику, возможно, придется немного пожертвовать эффективностью. снизить первоначальную стоимость.

Для достижения максимальной эффективности и продолжительности работы системы, система управления конденсационным котлом должна включать следующее:

  • Главный контроллер управления котлом: Главный контроллер управляет котлами и регулирует мощность горения для достижения максимальной эффективности котла. Контроллер также будет чередовать ведущие / отстающие / резервные котлы по расписанию для распределения часов работы. Эта функция также может выполняться BAS. На Рисунке 3 показано увеличение КПД котла при уменьшении скорости сжигания при неизменных всех остальных переменных.
  • Вход температуры наружного воздуха (OAT): Уставка температуры подачи горячей воды должна быть сброшена на основе температуры наружного воздуха для экономии энергии и снижения температуры воды, возвращаемой в котлы. Хотя эта стратегия наиболее распространена, когда существует прямая корреляция между OAT, нагрузкой, температурой подаваемой воды и поставляемой мощностью, появление систем прямого цифрового управления привело к появлению других подходов. Одним из наиболее распространенных является подход «подстройка и реагирование», при котором температура подаваемой воды снижается до тех пор, пока один или несколько клапанов повторного нагрева не откроются почти полностью.Если один или несколько клапанов на самом деле полностью открываются, то температура подаваемой воды немного повышается, пока вы не вернетесь к одному или нескольким клапанам, которые почти - но не полностью - открыты.
  • Датчик наружного воздуха может быть подключен напрямую к главному контроллеру котла, или логика сброса может находиться в BAS с выходом уставки температуры подаваемой воды на главный контроллер котла. Большинство конденсационных котлов работают с природным газом в качестве основного и пропаном в качестве вторичного источника топлива.Есть один-два производителя, у которых есть установки, которые могут работать на природном газе и мазуте №2.

Если объект или его конструкция требует, чтобы конденсационные котлы работали с пропаном в качестве вторичного источника топлива, важно проверить местные нормы; некоторые могут ограничить объем хранилища пропана (например, как в городе Чикаго), в то время как другие муниципалитеты могут разрешить хранение пропана вне здания.

Как конденсационные, так и неконденсирующие котлы сконструированы в соответствии со стандартами ASME по котлам и сосудам под давлением, раздел IV, а элементы управления и топливная арматура для обоих котлов должны соответствовать стандартам ASME CSD-1 и UL.К этим установкам также применяются другие нормы, такие как NFPA 54, Национальный кодекс по топливному газу.

Инженер-проектировщик должен изучить требования страхового андеррайтера объекта на случай, если они не соответствуют применимым кодексам, чтобы найти взаимоприемлемые точки соприкосновения.

Гибридные системы отопления

Гибридная система, содержащая как котлы без конденсации, так и конденсационные котлы, может использоваться, когда владелец пытается снизить начальные затраты, а также хочет повысить эффективность эксплуатации.

На рисунке 4 показана гибридная система отопления, обслуживающая нагревательный змеевик вентиляционной установки, змеевик повторного нагрева VAV и излучающие потолочные панели. Потребители тепла выбираются для удовлетворения расчетной дневной нагрузки с температурой подаваемой воды от 180 до 190 F и температурой обратной воды от 150 до 160 F. Котлы без конденсации подключены параллельно как часть первичного контура, каждый со специальным насосом, в то время как конденсационные котлы подключены параллельно как часть вторичного контура, каждый из которых имеет отдельный насос. Два распределительных насоса, каждый с приводом с регулируемой скоростью, обслуживают потребителей тепла.

Когда требуемая температура подаваемой воды в системе составляет от 180 до 190 F, что слишком высоко для конденсационных котлов для конденсации, система будет работать с менее дорогими котлами без конденсации.

На основании OAT необходимо отрегулировать температуру воды в системе. Когда на улице относительно тепло, температура подаваемой воды может быть снижена, и система может поддерживать расчетные условия помещения с более низкой температурой подаваемой воды, в течение которых конденсационные котлы будут работать в конденсационном режиме, а вода будет циркулировать только через вторичный контур.

Управление гибридной системой отопления сложнее, чем управление системой отопления с неконденсирующими или конденсационными котлами. Температуру воды в системе следует постоянно контролировать, чтобы определить, какой котел следует включить. Для достижения максимальной эффективности системы элементы управления должны включать следующее:

  • Главный контроллер управления котлом: Главный контроллер управляет котлами и регулирует мощность горения для достижения максимальной эффективности котла.Контроллер также будет чередовать ведущие / отстающие / резервные котлы по расписанию для распределения часов работы. Эту функцию также может выполнять BAS.
  • Вход температуры наружного воздуха: Уставка температуры подачи горячей воды должна быть сброшена на основе OAT для экономии энергии. Датчик наружного воздуха может быть подключен напрямую к главному контроллеру котла, или логика сброса может находиться в BAS с выходом уставки температуры подаваемой воды на главный контроллер котла. Диапазон графика сброса следует выбирать таким образом, чтобы он совпадал с условиями работы конденсационного и неконденсирующего котла.
  • Автоматические стопорные клапаны для переключения между конденсационным и неконденсирующим режимами работы котла: Автоматические стопорные клапаны будут работать как двухпозиционные для переключения между конденсационным и неконденсирующим режимами работы. OAT следует использовать для определения, когда следует переключаться между режимами работы с конденсацией и без конденсации.

Несмотря на то, что гибридная система отопления может снизить начальные затраты на систему отопления, инженеры по эксплуатации предприятия должны пройти специальную подготовку по рабочим различиям между режимами работы с конденсацией и без конденсации.

Два позиционных клапана, показанные на рисунке 4, также можно использовать в режиме регулирования для достаточно быстрого прогрева контура котла без конденсации, минимизируя время конденсации в котле во время разогрева; он также может минимизировать вероятность теплового удара, постепенно смешивая более холодную возвратную воду с контуром котла.

Что дальше?

В то время как высокая эксплуатационная эффективность конденсационных котлов будет определять их будущую спецификацию, неконденсирующие котлы будут по-прежнему использоваться в модификациях, где возникают проблемы устаревшего дизайна и где стоимость является основным фактором, до тех пор, пока более высокая эксплуатационная эффективность не будет требоваться в соответствии с новыми правилами использования энергии.А пока гибридные системы станут промежуточным звеном для экономного и экономного владельца здания.


Тебризи - вице-президент компании Environmental Systems Design. Он имеет более чем 25-летний опыт проектирования механических решений для фармацевтических предприятий, научно-исследовательских лабораторий, предприятий пищевой промышленности и коммерческих зданий. Как инженер проекта, он тесно сотрудничает с другими руководителями дисциплин, чтобы установить и реализовать проектные требования, графики и параметры бюджета.

.

Смотрите также