(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Как рассчитывается расход отопления


Как рассчитать оплату за отопление по своей квартире?

Вопрос о расчете размера платы за отопление является очень важным, так как суммы по данной коммунальной услуге потребители получают зачастую довольно внушительные, в то же время не имея никакого понятия, каким образом производился расчет.

С 2012 года, когда вступило в силу Постановление Правительства РФ от 06 мая 2011 №354 «О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» порядок расчета размера платы за отопление претерпел ряд изменений.

Несколько раз менялись методики расчета, появлялось отопление, предоставленное на общедомовые нужды, которое рассчитывалось отдельно от отопления, предоставленного в жилых помещениях (квартирах) и нежилых помещениях, но затем, в 2013 году отопление вновь стали рассчитывать как единую коммунальную услугу без разделения платы.

Расчет размера платы за отопление менялся с 2017 года, и в 2019 году порядок расчета вновь изменился, появились новые формулы расчета размера платы за отопление, в которых разобраться обычному потребителю не так уж и просто.

Для того чтобы рассчитать размер платы за отопление по своей квартире и выбрать нужную формулу расчета необходимо, в первую очередь знать:

1. Имеется ли на Вашем доме централизованная система теплоснабжения?

Это означает поступает ли тепловая энергия на нужды отопления в Ваш многоквартирный дом уже в готовом виде с использованием централизованных систем или тепловая энергия для Вашего дома производится самостоятельно с использованием оборудования, входящего в состав общего имущества собственников помещений в многоквартирном доме.

2. Оборудован ли Ваш многоквартирный дом общедомовым (коллективным) прибором учета, и имеются ли индивидуальные приборы учета тепловой энергии в жилых и нежилых помещениях Вашего дома?

Наличие или отсутствие общедомового (коллективного) прибора учета на доме и индивидуальных приборов учета в помещениях Вашего дома существенно влияет на способ расчета размера платы за отопление.

3. Каким способом Вам производится начисление платы за отопление – в течение отопительного периода либо равномерно в течение календарного года?

Способ оплаты за коммунальную услугу по отоплению принимается органами государственной власти субъектов Российской Федерации. То есть, в различных регионах нашей страны плата за отопление может начисляться по разному - в течение всего года или только в отопительный период, когда услуга фактически предоставляется.

4. Имеются ли в Вашем доме помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), или которые имеют собственные источники тепловой энергии?

Именно с 2019 года в связи с судебными решениями, процессы по которым проходили в 2018 году, в расчете стали участвовать помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), что предусмотрено технической документацией на дом, или жилые и нежилые помещения, переустройство которых, предусматривающее установку индивидуальных источников тепловой энергии, осуществлено в соответствии с требованиями к переустройству, установленными действующим на момент проведения такого переустройства законодательством Российской Федерации. Напомним, что ранее методики расчета размера платы за отопление не предусматривали для таких помещений отдельного расчета, поэтому начисление платы осуществлялось на общих основаниях.

Для того чтобы информация по расчету размера платы за отопление была более понятна, мы рассмотрим каждый способ начисления платы отдельно, с применением той или иной формулы расчета на конкретном примере.

При выборе варианта расчета необходимо обращать внимание на все составляющие, которые определяют методику расчета.

Ниже представлены различные варианты расчета с учетом отдельных факторов, которые и определяют выбор расчета размера платы за отопление:

Расчет №1 Размер платы за отопление в жилом/нежилом помещении, ОДПУ на многоквартирном доме отсутствует, расчет размера платы осуществляется в течение отопительного периода. Ознакомиться с порядком и примером расчета →

Расчет №2 Размер платы за отопление в жилом/нежилом помещении, ОДПУ на многоквартирном доме отсутствует, расчет размера платы осуществляется в течение календарного года (12 месяцев). Ознакомиться с порядком и примером расчета →

Расчет №3 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета во всех жилых/нежилых помещениях отсутствуют, плата за отопление производится в течение отопительного периода. Ознакомиться с порядком и примером расчета →

Расчет №3-1 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета во всех жилых/нежилых помещениях отсутствуют, плата за отопление производится равномерно в течение календарного года. Ознакомиться с порядком и примером расчета →

Расчет №4 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены не во всех помещениях многоквартирного дома, плата за отопление производится в течение отопительного периода. Ознакомиться с порядком и примером расчета →

Расчет №4-1Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены не во всех помещениях многоквартирного дома, плата за отопление производится в течение календарного года. Ознакомиться с порядком и примером расчета →

Расчет №5 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены всех жилых/нежилых помещениях многоквартирного дома. Ознакомиться с порядком и примером расчета →

Читайте также:

Расход в системах отопления

Объемный расход в системе отопления можно выразить как

q = h / (c p ρ dt) (1)

, где

q = объемный расход (м 3 / с )

ч = тепловой поток (кДж / с, кВт)

c p = удельная теплоемкость (кДж / кг o C )

ρ = плотность (кг / м 3 )

dt = разница температур ( o C)

Это общее уравнение может быть изменено для фактических единиц - СИ или британских единиц - и используемых жидкостей.

Объемный расход воды в имперских единицах

Для воды с температурой 60 o F Расход можно выразить как

q = ч (7,48 галлонов / фут 3 ) / ((1 БТЕ / фунт м o F) (62,34 фунта / фут 3 ) (60 мин / ч) dt)

= h / (500 dt) (2)

где

q = расход воды (гал / мин)

ч = расход тепла (БТЕ / час)

ρ = плотность ( фунт / фут 3 )

dt = разница температур ( o F)

Для более точного объемного расхода следует использовать свойства горячей воды.

Массовый расход воды в имперских единицах

Массовый расход воды можно выразить как:

м = h / ((1,2 БТЕ / фунт. o F) dt)

= ч / (1,2 дт) (3)

, где

м = массовый расход (фунт м / ч)

Объемный расход воды в единицах СИ

Объемный расход воды расход в системе отопления может быть выражен в единицах СИ как

q = h / ((4.2 кДж / кг o C) (1000 кг / м 3 ) dt)

= h / (4200 dt) (4)

где

q = вода расход (м 3 / с)

h = тепловой поток (кВт или кДж / с)

dt = разница температур ( o C)

Для более При точном объемном расходе следует использовать свойства горячей воды.

Массовый расход воды в единицах СИ

Массовый расход воды можно выразить как:

м = h / ((4,2 кДж / кг o C) dt)

= h / (4,2 dt) (5)

где

м = массовый расход (кг / с)

Пример - расход в системе отопления

A циркулирующая вода системы отопления выдает 230 кВт с перепадом температур 20 o C .

Объемный расход можно рассчитать как:

q = (230 кВт) / ((4,2 кДж / кг o C) (1000 кг / м 3 ) (20 o C) )

= 2,7 10 -3 м 3 / с

Массовый расход можно выразить как:

м = (230 кВт) / ((4,2 кДж / кг o C) (20 o C))

= 2.7 кг / с

Пример - Нагрев воды с помощью электричества

10 литров воды нагревается с 10 o C до 100 o C за 30 минут . Тепловой поток можно рассчитать как

h = (4,2 кДж / кг o C) (1000 кг / м 3 ) (10 литров) (1/1000 м 3 / литр) ( (100 o C) - (10 o C)) / ((30 мин) (60 с / мин))

= 2.1 кДж / с (кВт)

Электрический ток 24 В постоянного тока , необходимый для обогрева, можно рассчитать как

I = (2,1 кВт) (1000 Вт / кВт) / (24 В)

= 87,5 А

.

Тепло, работа и энергия

Тепло (энергия)

Единица измерения тепла (или энергии) в системе СИ составляет джоуль (Дж) .

С разницей температур

Другими единицами измерения тепла являются британская тепловая единица - Btu (количество тепла, необходимое для подъема 1 фунта воды на 1 o F ) и Калорийность (количество тепла, чтобы поднять 1 грамм воды на 1 o C ( или 1 K )).

калорий определяется как количество тепла, необходимое для изменения температуры одного грамма жидкой воды на один градус Цельсия (или один градус Кельвина).

1 кал = 4,184 Дж

1 Дж = 1 Вт · с

= (1 Вт · с) (1/3600 ч / с)

= 2,78 10 -4 кВт · ч

Тепловой поток (мощность)

Теплопередача только в результате разницы температур называется тепловым потоком . Единицы СИ для теплового потока: Дж / с или ватт (Вт) - то же, что и мощность. Один ватт определяется как 1 Дж / с .

Удельная энтальпия

Удельная энтальпия - это мера полной энергии в единице массы. Обычно используются единицы СИ: Дж / кг или кДж / кг .

Термин относится к общей энергии, обусловленной давлением и температурой текучей среды (например, воды или пара) в любой момент времени и при любых условиях.Точнее говоря, энтальпия - это сумма внутренней энергии и работы, совершаемой под действием приложенного давления.

Тепловая мощность

Тепловая мощность системы составляет

  • количество тепла, необходимое для изменения температуры всей системы на один градус .

Удельная теплоемкость

Удельная теплоемкость (= удельная теплоемкость) - это количество тепла, необходимое для изменения температуры на одну единица массы вещества на на один градус .

Удельная теплоемкость может быть измерена в Дж / г K, Дж / кг K , кДж / кг K, кал / гK или БТЕ / фунт o F и более .

Никогда не используйте табличные значения теплоемкости, не проверив единицы фактических значений!

Удельную теплоемкость для обычных продуктов и материалов можно найти в разделе «Свойства материала».

Удельная теплоемкость - постоянное давление

Энтальпия - или внутренняя энергия - вещества зависит от его температуры и давления.

Изменение внутренней энергии относительно изменения температуры при фиксированном давлении - это удельная теплоемкость при постоянном давлении - c p .

Удельная теплоемкость - постоянный объем

Изменение внутренней энергии относительно изменения температуры при фиксированном объеме представляет собой удельную теплоемкость при постоянном объеме - c v .

Если давление не очень высокое, работой, выполняемой приложением давления к твердым телам и жидкостям, можно пренебречь, а энтальпия может быть представлена ​​только компонентом внутренней энергии.Можно сказать, что теплота с постоянным объемом и постоянным давлением равна.

Для твердых и жидких веществ

c p = c v (1)

Удельная теплоемкость представляет собой количество энергии, необходимое для подъема 1 кг вещества к 1 o C (или 1 K) , и ее можно рассматривать как способность поглощать тепло. Единицы измерения удельной теплоемкости в системе СИ: Дж / кг · К (кДж / кг o C) .Вода имеет большую удельную теплоемкость 4,19 кДж / кг o C по сравнению со многими другими жидкостями и материалами.

  • Вода - хороший теплоноситель!

Количество тепла, необходимое для повышения температуры

Количество тепла, необходимое для нагрева объекта от одного температурного уровня до другого, может быть выражено как:

Q = c p m dT ( 2)

, где

Q = количество тепла (кДж)

c p = удельная теплоемкость (кДж / кг · К)

м = масса (кг )

dT = разница температур между горячей и холодной стороной (K)

Пример воды для отопления

Учитывайте энергию, необходимую для нагрева 1.0 кг воды от 0 o C до 100 o C при удельной теплоемкости воды 4,19 кДж / кг o C :

Q = (4,19 кДж / кг o C ) (1,0 кг) ((100 o C) - (0 o C))

= 419 (кДж)

Работа

Работа и энергия с технической точки зрения - одно и то же, но работа - это результат, когда направленная сила (вектор) перемещает объект в одном направлении.

Объем выполненной механической работы можно определить с помощью уравнения, полученного из ньютоновской механики.

Работа = Приложенная сила x Расстояние, перемещенное в направлении силы

или

W = F l (3)

, где

W = работа (Нм, Дж)

F = приложенная сила (Н)

l = длина или пройденное расстояние (м)

Рабочий стол также может быть описан как произведение приложенного давления и перемещенного объема:

Работа = Приложенное давление x Вытесненный объем

или

W = p A l (3b)

, где

p = приложенное давление (Н / м 2 , Па)

A = под давлением площадь (м 2 )

l = длина или расстояние, на которое зона давления перемещается под действием приложенной силы (м)

Пример - Работа, выполняемая силой

Работа, выполняемая силой 100 Н перемещение тела 50 м можно рассчитать как

W = (100 Н) (50 м)

= 5000 (Нм, Дж)

Единица измерения - джоуль, J, который определяется как количество работы, выполненной, когда сила 1 ньютон действует на расстоянии 1 м в направлении силы.

1 Дж = 1 Нм

Пример - Работа под действием силы тяжести

Работа, выполненная при подъеме массы 100 кг на высоте 10 м может быть рассчитана как

W = F г ч

= mgh

= (100 кг) (9,81 м / с 2 ) (10 м)

= 9810 (Нм, Дж)

, где

F г = сила тяжести - или вес (Н)

г = ускорение свободного падения 9.81 (м / с 2 )

h = высота (м)

В британских единицах измерения единичная работа выполняется при весе 1 фунт f (фунт-сила) является поднимается вертикально против силы тяжести на расстояние 1 фут . Единица называется фунт-фут .

Поднят объект массой 10 снарядов 10 футов . Проделанную работу можно рассчитать как

W = F г h

= m g h

= (10 пробок) (32.17405 фут / с 2 ) (10 футов)

= 3217 фунтов f футов

Пример - Работа, связанная с изменением скорости

Работа, выполненная при массе 100 кг ускоряется от от скорости 10 м / с до скорости 20 м / с можно рассчитать как

W = (v 2 2 - v 1 2 ) м / 2

= ((20 м / с) 2 - (10 м / с) 2 ) (100 кг) / 2

= 15000 (Нм, Дж)

где

v 2 = конечная скорость (м / с)

v 1 = начальная скорость (м / с)

Energy

Energy - это способность делать работа (перевод с греческого - «работа внутри»).Единицей измерения работы и энергии в системе СИ является джоуль, определяемый как 1 Нм .

Движущиеся объекты могут выполнять работу, потому что обладают кинетической энергией. («кинетический» означает «движение» по-гречески).

Количество кинетической энергии, которой обладает объект, можно рассчитать как

E k = 1/2 мВ 2 (4)

, где

m = масса объекта (кг)

v = скорость (м / с)

Энергия положения уровня (запасенная энергия) называется потенциальной энергией.Это энергия, связанная с силами притяжения и отталкивания между объектами (гравитация).

Полная энергия системы складывается из внутренней, потенциальной и кинетической энергии. Температура вещества напрямую связана с его внутренней энергией. Внутренняя энергия связана с движением, взаимодействием и связыванием молекул внутри вещества. Внешняя энергия вещества связана с его скоростью и местоположением и является суммой его потенциальной и кинетической энергии.

.

Процесс нагрева паром - расчет нагрузки

Обычно паровой нагрев используется для

  • изменения температуры продукта или жидкости
  • поддержания температуры продукта или жидкости

Преимущество пара заключается в большом количестве тепла энергия, которую можно передать. Энергия, выделяемая при конденсации пара в воду, находится в диапазоне 2000 - 2250 кДж / кг (в зависимости от давления) - по сравнению с водой с 80 - 120 кДж / кг (с разницей температур 20 - 30 o С ).

Изменение температуры продукта - нагрев продукта паром

Количество тепла, необходимое для повышения температуры вещества, может быть выражено как:

Q = mc p dT (1)

где

Q = количество энергии или тепла (кДж)

м = масса вещества (кг)

c p = удельная теплоемкость вещества (кДж / кг o C) - Свойства материалов и теплоемкость обычных материалов

dT = повышение температуры вещества ( o C)

Имперские единицы? - Проверьте конвертер единиц!

Это уравнение можно использовать для определения общего количества тепловой энергии для всего процесса, но оно не принимает во внимание скорость передачи тепла , которая составляет:

  • количество тепловой энергии, переданной в единицу времени

В приложениях без проточного типа нагревается фиксированная масса или единичная партия продукта.В приложениях проточного типа продукт или жидкость нагревается, когда она постоянно течет по поверхности теплопередачи.

Непоточный или периодический нагрев

В непроточных приложениях технологическая жидкость хранится в виде единой партии в резервуаре или емкости. Паровой змеевик или паровая рубашка нагревают жидкость от низкой до высокой температуры.

Средняя скорость теплопередачи для таких приложений может быть выражена как:

q = mc p dT / t (2)

, где

q = средняя теплопередача мощность (кВт (кДж / с))

м = масса продукта (кг)

c p = удельная теплоемкость продукта (кДж / кг. o C) - Свойства материалов и теплоемкость обычных материалов

dT = Изменение температуры жидкости ( o C)

t = общее время, в течение которого процесс нагрева происходит (секунды)

Пример - Время, необходимое для нагрева воды с прямым впрыском пара

Время, необходимое для нагрева 75 кг воды (c p = 4,2 кДж / кг o C) от температуры 20 o C до 75 o C с паром, произведенным из котла мощностью 200 кВт (кДж / с) можно рассчитать путем преобразования уравнения.От 2 до

t = mc p dT / q

= (75 кг) (4,2 кДж / кг o C) ((75 o C) - (20 o C) ) / (200 кДж / с)

= 86 с

Примечание! - когда пар впрыскивается непосредственно в воду, весь пар конденсируется в воду, и вся энергия пара передается мгновенно.

При нагреве через теплообменник имеет значение коэффициент теплопередачи и разница температур между паром и нагретой жидкостью.Повышение давления пара увеличивает температуру и увеличивает теплопередачу. Время нагрева уменьшено.

Общее потребление пара может увеличиваться - из-за более высоких тепловых потерь или уменьшаться - из-за более короткого времени нагрева, в зависимости от конфигурации реальной системы.

Процессы проточного или непрерывного нагрева

В теплообменниках поток продукта или жидкости непрерывно нагревается.

Преимущество пара - это однородная температура поверхности нагрева, поскольку температура поверхностей нагрева зависит от давления пара.

Средняя теплопередача может быть выражена как

q = c p dT м / т (3)

где

q = средняя скорость теплопередачи (кВт (кДж) / с))

м / т = массовый расход продукта (кг / с)

c p = удельная теплоемкость продукта (кДж / кг. o C )

dT = изменение температуры жидкости ( o C)

Расчет количества пара

Если мы знаем скорость теплопередачи - количество пара можно рассчитать:

м с = q / h e (4)

где

м с = масса пара (кг / с)

q = расчетная теплопередача (кВт)

h e = энергия испарения пара (кДж / кг)

Энергию испарения при различных давлениях пара можно найти в Таблица Steam с единицами SI или таблица Steam с британскими единицами измерения.

Пример - периодический нагрев паром

Количество воды нагревается паром с давлением 5 бар (6 бар абс.) от температуры 35 o C до 100 o C в течение периода 20 минут (1200 секунд) . Масса воды 50 кг, и удельная теплоемкость воды 4,19 кДж / кг. o С .

Скорость теплопередачи:

q = (50 кг) (4,19 кДж / кг o C) ((100 o C) - (35 o C)) / (1200 с)

= 11.35 кВт

Количество пара:

м с = (11,35 кВт) / (2085 кДж / кг)

= 0,0055 кг / с

= 19,6 кг / ч

Пример - Непрерывный нагрев паром

Вода течет с постоянной скоростью 3 л / с нагревается от 10 o C до 60 o C паром при 8 бар (9 бар абс) .

Расход тепла можно выразить как:

q = (4.19 кДж / кг. o C) ((60 o C) - (10 o C)) (3 л / с) (1 кг / л)

= 628,5 кВт

Расход пара может можно выразить как:

м с = (628,5 кВт) / (2030 кДж / кг)

= 0,31 кг / с

= 1115 кг / ч

.

Тепло из недр Земли не влияет на климат

Тепло из недр Земли не влияет на климат

Размещено 17 сентября 2011 г. автором Andy Skuce

Это сообщение в блоге представляет собой промежуточное опровержение климатического мифа «Подземная температура контролирует климат».

Миф:

«Существуют и другие возможные причины изменения климата, которые могут быть связаны с солнечной активностью или с изменениями температуры жидкого ядра Земли, которая составляет около 5400 градусов по Цельсию.Нам не нужен сильный тепловой поток - достаточно высокая температура ядра, чтобы повлиять на климат на поверхности. Внутри Земли сильное тепло ». Ссылка. См. Также здесь.

Рассмотрим:

  • Центр Земли имеет температуру более 6000 ° C, что выше, чем поверхность Солнца.
  • Все мы видели фотографии рек раскаленной магмы, изливающейся из вулканов.
  • Многие из нас купались в природных горячих источниках.
  • Есть планы использовать геотермальную энергию в качестве возобновляемого ресурса.

Здравый смысл подсказывает, что вся эта жара должна иметь большое влияние на климат. Но наука говорит нет: количество тепловой энергии, исходящей из Земли, на самом деле очень мало, и скорость потока этого тепла очень стабильна в течение длительных периодов времени. Влияние на климат на самом деле слишком мало, чтобы его стоило учитывать.

Тепловой поток Земли

Откуда поступает тепло?

  • На Земле есть радиоактивные элементы, в основном калий, уран и торий, которые имеют длительный период полураспада.Когда их ядра распадаются, они выделяют тепло, как в ядерном реакторе. Некоторые исследователи говорят, что «подавляющее большинство тепла в недрах Земли - до 90 процентов - подпитывается распадом радиоактивных изотопов», в то время как другие ученые заявляют, что «тепло от радиоактивного распада составляет около половины общего теплового потока Земли». Подробнее здесь.
  • Земля все еще горячая с тех пор, как планета сформировалась из скопления более мелких частиц. Еще больше тепла было получено, когда материалы с высокой плотностью, такие как железо и никель, впоследствии отделились и сформировали ядро ​​Земли.

В основном твердые, скалистые внешние слои Земли, кора и мантия, имеют низкую теплопроводность, действуя как тепловое одеяло, замедляющее передачу тепла к поверхности. На самых ранних этапах истории Земли внутренние температуры и тепловые потоки, вероятно, были намного выше, чем сегодня, отчасти потому, что планета только начала остывать, а отчасти потому, что тогда поток энергии от радиоактивного распада был намного больше.

Как тепло попадает на поверхность?

Согласно Стейну и Стейну (загрузка 10 Мбайт) большая часть тепловой энергии (около 70%), которая попадает на поверхность, переносится конвекцией мантии.Это процесс, который движет тектоникой плит. Большая часть остального теплового потока, 25%, приходится на теплопроводность. Небольшой остаток переносится мантийными шлейфами, горячими точками, связанными с некоторыми вулканами.

Рис. 1. Ячейки мантийной конвекции, которые отвечают за перенос большей части тепла Земли из недр на поверхность. Википедия

Мантийные конвекционные ячейки - это супер-танкеры глобальной тектоники, транспортирующие огромное количество горячей породы, но меняющие скорость и направление лишь постепенно.Проведение тепла через породы континентальной коры Земли также является неторопливым и стабильным процессом; с подачей тепла, измеряемого атомными часовыми механизмами. В мире есть несколько хорошо известных горячих точек, где магма и горячая вода быстро переносят тепло на поверхность, но энергия, выделяемая в этих местах, не имеет большого значения в глобальной схеме вещей. Скорость отвода тепла от Земли низкая и очень стабильная.

Рис. 2: Красным цветом обозначены океанические хребты, где конвекция мантии выходит на поверхность и где образуется новая океаническая кора.Цвета указывают возраст океанической коры, пурпурный - самый старый. Источник.

.

Смотрите также