(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Как увеличить теплоотдачу батареи центрального отопления


повышаем температуру в отопительный сезон

Часто в квартирах, особенно старой застройки, с каждым годом зимой становится всё холоднее. Людям приходится приобретать и использовать электрические отопительные приборы, что приводит к существенному повышению стоимости коммунальных услуг. Но зачем переплачивать за перерасход электроэнергии, если есть более дешёвые варианты исправления ситуации? Сегодня мы расскажем о простых способах увеличения теплоотдачи батарей отопления, которые не требуют значительных затрат, воплотить в жизнь которые вполне по силам любому домашнему мастеру. Стоит рассмотреть и причины, приводящие к снижению температуры в помещении.

Забитые каналы секций радиатора – частая причина снижения температуры в помещении

Содержание статьи

Частые причины уменьшения теплоотдачи батареи отопления

Чаще всего причиной уменьшения теплоотдачи радиаторов становится накипь и ржавчина, скапливающаяся внутри. Если сам радиатор промыть (что должны делать коммунальные службы ежегодно), то теплоотдача значительно увеличится. То же касается и стояков отопления. Однако, своими силами такую процедуру произвести не удастся по причине того, что при производстве подобных работ (даже летом) необходим слив воды из системы. Без помощи специалистов здесь не обойтись. Это же касается и замены радиаторов с чугунных на биметаллические – они имеют большую теплоотдачу. Поэтому на столь сложных и трудоёмких вариантах мы останавливаться не будем. Лучше рассмотрим более простые способы, выполнить которые сможет любой домашний мастер, даже не имеющий опыта работ в подобной области.

Теплоотдача биметаллических радиаторов выше, чем у чугуна

Используем экран-отражатель: применение вспененного полиэтилена

Использование отражающего экрана – довольно популярный метод увеличения теплоотдачи. Вспененный полиэтилен с фольгированным покрытием с одной стороны прекрасно подходит для этих целей. Такой экран (он должен быть больше самого радиатора) помещается за батареей фольгой в направлении комнаты и фиксируется на стене на двухсторонний скотч или жидкие гвозди. Вспененный полиэтилен обеспечивает дополнительное утепление, а фольга отражает тепло, которое до установки экрана прогревало стену, направляя его в помещение.

Важная информация! Лучше всего, когда такие моменты продумываются ещё на этапе монтажа батарей отопления. В этом случае за радиатором можно закрепить стальной ребристый щит, который будет накапливать тепло, после чего направлять его в комнату. Такие щиты удобны, если часто происходят отключения отопления.

Примерно так выглядит экран из фольгированного вспененного полиэтилена

Также в роли экрана неплохо себя зарекомендовали базальтовые плиты с алюминиевым покрытием.

Увеличение теплоотдачи при помощи дополнительных приспособлений и окраски

Для увеличения температуры воздуха в помещении используют специальные кожухи из алюминия, которые одеваются на радиатор. С их помощью увеличивается площадь батареи отопления и, как следствие, их теплоотдача. Стоимость подобных кожухов невелика, а эффект довольно значителен.

Цвет, в который окрашены батареи отопления, тоже имеет большое значение. Лучше для этих целей выбрать более тёмные оттенки. К примеру, радиатор, окрашенный в коричневый цвет имеет теплоотдачу больше, чем белые, на 20-25%.

Такой кожух улучшает внешний вид и увеличивает теплоотдачу

Улучшение конвекции, путём увеличения циркуляции воздуха

Каждый знает, что улучшение циркуляции воздуха способствует более быстрому прогреву помещения. Для этих целей можно использовать вентилятор, который устанавливается таким образом, чтобы достигнуть максимального потока тёплого воздуха в сторону помещения.

Полезная информация! Если дома имеются кулеры от компьютеров, которые не используются, можно их установить под радиатором, направив поток воздуха вверх. Это максимально увеличит конвекцию, в результате чего в комнате станет значительно теплее.

Увеличить конвекцию (если радиатор утоплен под подоконником) можно, прорезав в подоконнике отверстия и закрыв их экранами или декоративными крышками. Таким образом, тёплый воздух не будет задерживаться в нише, что улучшит циркуляцию.

Эту страну не победить! Самостоятельный монтаж вентиляторов для улучшения конвекции:

Общие правила улучшения теплоотдачи радиаторов отопления

Для того чтобы в будущем не сталкиваться с уменьшением теплоотдачи батарей, стоит об этом подумать ещё на этапе монтажа радиаторов. Основными правилами являются:

  • обязательное утепление стены за радиатором, возможная установка стального экрана;
  • установка биметаллических батарей взамен чугунных;
  • монтаж кранов на входе и выходе радиатора (это позволит при необходимости самостоятельно промыть секции или добавить дополнительные без отключения и слива всей системы).

Если соблюдать эти нехитрые правила при монтаже, впоследствии будет намного проще увеличить температуру в помещении без обращения за помощью к специалистам. А это дополнительная экономия семейного бюджета.

Не очень удачное решение:решётка перекрывает путь теплу, а подоконник добавляет проблем с конвекцией

Подведём итог

Способов увеличить теплоотдачу радиаторов отопления очень много. Сегодня мы рассмотрели лишь основные из них. Однако, следует помнить, что всегда проще всё продумать заранее, на стадии монтажа, чем прикладывать множество усилий впоследствии, без уверенности в том, что результат будет значительным. К сожалению, в России всё делается на «авось». Заключительным советом редакции Homius.ruбудет такая рекомендация: думайте о будущем и не жалейте средств при монтаже. Сэкономленные сегодня финансовые средства могут завтра обернуться затратами, которые в разы превысят Вашу экономию.

Наиболее оптимальный вариант – всё тепло поднимается вверх, благодаря чему создаётся нормальный теплообмен

Надеемся, что изложенная в сегодняшней статье информация была интересна и полезна нашему Уважаемому читателю. Несмотря на то, что мы постарались изложить всё достаточно подробно, возможно, у Вас остались вопросы по материалу. В этом случае задавайте их в обсуждениях ниже – редакция Homius.ru с удовольствием на них ответит в максимально сжатые сроки. Если вы знаете способ улучшить теплоотдачу радиаторов, который не нашёл отражения в сегодняшней статье, просим поделиться им с другими домашними мастерами – эта информация будет весьма полезна. А напоследок предлагаем посмотреть короткий, но достаточно информативный видеоролик по сегодняшней теме.

 

Предыдущая

Инженерия🔥 Невидимое тепло: гипсокартонное инфракрасное отопление

Следующая

Инженерия☀ Тепловая завеса на входную дверь: комфортная температура в помещении при любом морозе

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Теплопередача и энтропия | IntechOpen

1. Введение

Когда вы читаете стандартный учебник по термодинамике (например, [1-3]) в качестве одной из наиболее фундаментальных формул, вы обнаружите, что

указывает на то, что количество тепла (процесса) (δQ), очевидно, близко связаны с (государственной) количественной энтропией (dS), здесь обе записаны как бесконечно малые величины.

Если, однако, вы проделаете то же самое со стандартным учебником по теплопередаче (например, [4] с 1024 страницами или [5] с 1107 страницами), вы не найдете энтропию ни в указателе этих книг, ни в тексте. .

Для этого может быть две причины: либо энтропия оказалась несущественной для анализа теплопередачи, либо энтропия сознательно игнорируется сообществом теплопередачи, несмотря на ее актуальность. Что является правдой, это пока открытый вопрос, и на него можно ответить, только если принять во внимание термодинамические соображения.

В термодинамике значение энтропии по отношению к теплопередаче не вызывает никаких споров, в ее значимости следует убедить сообщество теплопередачи.Лучше всего это можно сделать, продемонстрировав преимущества включения энтропии в анализ теплопередачи, а также показывая недостатки, с которыми приходится сталкиваться, когда энтропия игнорируется.

2. Термодинамический взгляд на теплообмен

2.1. Общие соображения

Инженеры, использующие фразу «теплопередача», не будут обеспокоены представлением о том, что тепло перемещается через границу системы и затем накапливается в ней, увеличивая ее теплосодержание.

Однако такая аргументация нарушает по крайней мере два принципа термодинамики и упускает из виду важный момент.С точки зрения термодинамики тепло - это величина процесса, которая описывает определенный способ передачи энергии через границу системы. И, конечно, это количество не может быть сохранено, может храниться только энергия, перемещаемая им.

И решающий момент: передача энергии в виде тепла в систему коренным образом отличается от передачи энергии в процессе работы. Энергия, передаваемая в виде тепла и работы, хотя и может быть одинаковым, имеет совсем другое качество, если она является частью энергии системы.Чтобы выразить это в простой и пока еще не точной форме: не только количество энергии учитывается в процессах передачи энергии (например, передача тепла), но также качество энергии и изменение качества во время процесса передачи. . Если это так, то должна быть мера качества и его потенциального ухудшения в процессах передачи энергии. Здесь энтропия играет решающую роль - даже в рассмотрении теплопередачи.

Из очень четкого принципа сохранения энергии (термодинамически сформулированного как первый закон термодинамики) мы знаем, что энергия, заданная как первичная энергия, никогда не теряется при использовании в технических устройствах, а в конечном итоге оказывается частью внутренней энергии окружающей среды.Но тогда это уже бесполезно. Очевидно, что энергия обладает определенным потенциалом, который может потеряться на пути от первичной энергии к внутренней энергии окружающей среды.

В термодинамике есть полезное определение, с помощью которого можно охарактеризовать качество энергии, которое было впервые предложено в [6]. Это определение в первую очередь относится к энергии, которая подвергается процессам передачи работы или тепла. Согласно этому определению энергия состоит из двух частей: эксергии, и энергии, .В рамках этой концепции эксергия - драгоценная часть энергии. Это та часть, которую можно использовать в работе, пока она не станет частью внутренней энергии окружающей среды. Иногда эксергия также называется , доступная работа . Оставшаяся часть энергии называется анергией. Согласно второму закону термодинамики эксергия может потеряться (может быть преобразована в анергию) в необратимых процессах, но никогда не может возникнуть. Любая передача энергии работой или теплом, таким образом, может либо сохранить эксергетическую часть энергии в обратимом процессе, либо уменьшить ее в необратимом.

Что касается теплопередачи, важны два аспекта: первый - это количество энергии, передаваемой теплом, а второй - количество эксергии, потерянной в этом (теплопередающем) процессе. Игнорирование энтропии означает, что можно учесть только первый аспект. Для полной характеристики процесса теплопередачи должны быть учтены оба аспекта, то есть должны быть указаны две физические величины. Они могут быть

В процессе теплопередачи обе величины не зависят друг от друга, потому что определенное количество энергии (q˙) может передаваться с различным снижением качества, т.е.е. с разной степенью необратимости (ΔT). Здесь ΔT является косвенной мерой снижения качества энергии в процессе передачи, поскольку ΔT = 0 является обратимым пределом необратимого процесса с ΔT> 0. Когда требуются две независимые величины, то в контексте безразмерного описания процессов теплопередачи необходимы два безразмерных параметра. В разделе 3 будет обсуждаться, чего не хватает при использовании числа Нуссельта Nualone для характеристики процесса теплопередачи.

В термодинамике два аспекта передачи энергии и ее обесценивания необратимыми процессами количественно оцениваются путем введения энтропии и ее генерации в ходе необратимых процессов. В этом контексте энтропия является мерой структуры системы, хранящей рассматриваемую энергию, то есть энергия может храниться более или менее упорядоченным образом. Это снова может быть выражено в терминах эксергии по сравнению с анергией переданной и накопленной энергии.

2.2. Изменение энтропии в процессах передачи энергии

Для большинства соображений представляет интерес не абсолютное значение энтропии, а ее изменение во время определенного процесса, такого как процесс передачи тепла.Это изменение энтропии в процессе переноса обычно бывает двояким:

  1. Перенос - изменение энтропии в обратимом процессе,

  2. Генерация - изменение энтропии, когда процесс переноса необратим, т.е. необратим.

Таким образом, в реальном (необратимом) процессе изменение энтропии всегда является суммой обоих, то есть (i) + (ii).

Для процесса теплопередачи между двумя температурными уровнями Ta и Tb две части (i) и (ii) равны

dgS˙ = δQ˙ (1Ta − 1Tb) = δQ˙Ta− TbTaTb = δQ˙ΔTTaTbE3

Уравнение (2) соответствует к эк.(1) во введении, теперь в терминах скорости непрерывного процесса. Уравнение (3) утверждает, что генерация энтропии приводит к увеличению энтропии, когда энергия передается от одной системы (a) с высокой температурой (то есть с низкой энтропией) к другой системе (b) с низкой температурой (то есть с высокой энтропией). Таким образом, общее изменение энтропии в таком процессе составляет

. На рисунке 1 такой процесс проиллюстрирован для конвективной теплопередачи от потока в системе (a) с m˙ato потоком в системе (b) с m˙b.Стенка между обоими потоками - диабатическая, стенки в окружающую среду - адиабатические.

Изменение энтропии в ур. (3) строго говоря, это только приближение. Он основан на предположении, что в (a) и (b) реальные распределения температуры могут быть аппроксимированы их (постоянными) средними значениями и что падение температуры от (a) до (b) полностью происходит в стенке между ними. системы, см. рисунок 1 для иллюстрации этого приближения. В разделе 4 учитывается реальное распределение температуры, чтобы определить изменение энтропии при образовании без приближения.

Хотя это не тема данной главы, следует упомянуть, что (i) и (ii) являются для передачи энергии работой:

с δΦ δ как скорость диссипации механической энергии в поле потока, участвующего в передаче обработать. То, что всегда dtS˙ = 0 для рабочей передачи энергии, показывает фундаментальное различие двух способов передачи энергии, то есть посредством тепла или работы, ср. экв. (2) для передачи энергии теплом.

Рисунок 1.

Конвективная теплопередача от потока в (a) к потоку в (b) над элементом поверхности dA (1) Распределение реальной температуры (2) Модель средней температуры

2.3. Обесценивание энергии в процессе теплопередачи и концепция энтропийного потенциала

Когда в процессе передачи энергии теряется эксергия, «ценность» энергии уменьшается, поскольку эксергия как драгоценная часть энергии уменьшается. Это называется девальвацией энергии во время процесса передачи и непосредственно связано с генерацией-изменением энтропии, ср. экв. (3).

Потеря эксергии и генерируемая энтропия взаимосвязаны так называемой теоремой Гуи-Стодолы, см., Например, [7].Он читает

Здесь T∞ - температура окружающей среды, а E˙le - потеря мощности эксергии E˙e уровня энергии E energy после разделения E sub на эксергетическую и анергическую части, E˙e и E˙a, соответственно. .

Для одной операции передачи, обозначенной it, тогда существуют конечные потери эксергии

с S˙g, ias генерация энтропии в операции передачи i. Эту генерацию энтропии можно и нужно рассматривать в контексте тех девальваций скорости передачи энергии E˙, которые произошли до операции передачи i и будут происходить после нее.Эта идея принимает во внимание, что определенная энергия (скорость) всегда начинается как первичная энергия, являющаяся эксергией в целом, и, наконец, заканчивается как часть внутренней энергии окружающей среды, затем как анергия в целом. В [8] это было описано как «цепочка девальвации» по отношению к скорости передачи энергии E˙ с процессом, охватывающим одно звено этой цепи.

Для суммы всех однократных операций передачи, которые полностью обесценивают энергию со 100% эксергии до 100% анергии,

удерживается.Здесь S˙g - это общее образование (скорость) энтропии, то есть увеличение энтропии окружающей среды, когда E˙ становится частью его внутренней энергии.

В [8] эта величина называется энтропийным потенциалом :

энергии E˙, вовлеченной в процесс передачи энергии (здесь: тепла). Принимая это за эталонную величину, так называемое число девальвации энергии

Ni≡ S˙g, iS˙g = T∞S˙g, iE˙E11

указывает, какая часть энтропийного потенциала энергии используется в определенной передаче. процесс i с Ni = 0 для обратимого процесса.Примеры будут приведены позже.

3. Инженерный взгляд на теплопередачу

Как упоминалось ранее, инженеры, обученные решать проблемы теплопередачи с помощью таких книг, как [4], мало заботятся или совсем не заботятся об энтропии. Они характеризуют ситуации теплопередачи коэффициентом теплопередачи

или, более систематически, числом Нуссельта

В обоих случаях q˙w и ΔT объединяются в одной оценочной величине, так что два независимых аспекта теплопередачи

  • сумма, связанная с q˙wand

  • , изменение качества, связанная с ΔT

, отдельно не фиксируется.Вторая величина оценки требуется для исчерпывающей характеристики ситуации теплопередачи. Это может быть число девальвации энергии Nia согласно ур. (11).

Когда Nia учитывает качество теплопередачи, число Нуссельта охватывает количественный аспект в следующем смысле. Часто либо ΔTor q˙ware назначают в качестве теплового граничного условия. Затем число Нуссельта количественно определяет теплопередачу, предоставляя возникающий тепловой поток или требуемую разность температур, соответственно.Оба аспекта являются количественными, поэтому вопрос о качестве остается открытым. Тогда это решается числом обесценения энергии Ni.

Поскольку число Нуссельта хорошо известно в сообществе теплопередачи, а число обесценения энергии Ni - нет, Ni будет дополнительно объяснен в связи с его физическими предпосылками в следующем разделе.

4. Физика, лежащая в основе девальвации энергии число

Согласно закону теплопроводности Фурье, см., Например, [4] или [9],

δQ˙ → = −k (grad T) dAE14

i.е. тепловой поток возникает по (отрицательному) градиенту температуры. Передаваемая таким образом энергия уменьшает свою эксергетическую часть, поскольку эта эксергетическая часть равна

с коэффициентом Карно

Здесь снова T∞ - это температура окружающей среды, так что эксергетическая часть Q˙ после того, как ее уровень температуры Thas достигнет температуры окружающей среды, равно нулю.

Эти постоянные эксергетические потери, когда теплопередача происходит с gradT> 0 (необратимая теплопередача) в соответствии с теоремой Гуи-Стодола (7), сопровождаются генерацией энтропии, которую здесь можно записать как

или после интегрирования локальной скорости генерации энтропии S˙g '' 'как

, что в декартовых координатах читается как

dgS˙ = kT2 [(∂T∂x) 2+ (∂T∂y) 2+ (∂T∂z) 2] dVE19

Обратите внимание, что это уравнение .(19) сводится к ур. (3) когда существует линейное распределение температуры только в направлении x, так что ∂T / ∂x = ΔT / Δx, dV = dAΔx и ∂Q˙ = −k (ΔT / Δx) dA.

Сравнение ур. (3) и (19) показывает, что

в модели средней температуры в соответствии с ур. (3) и рисунок 1 (2) представляет собой интегрирование относительно δQ˙, в то время как с реальным распределением температуры в соответствии с ур. (19) и рис. 1 (1) это интегрирование по объему, учитывающее скорость генерации локальной энтропии.

В обоих случаях определяется S˙g, i, которое представляет собой общее генерирование энтропии за счет теплопроводности в процессе передачи i.Число девальвации энергии относится к энтропийному потенциалу Q˙, то есть к Q˙ / T∞, так что

Ni = k T∞Q˙∫V1T2 [(∂T∂x) 2+ (∂T∂y) 2 + (∂T∂z) 2] dVE21

- это процент использованного энтропийного потенциала энергии E˙, который в процессе i передается в виде тепла Q˙. Обратите внимание, что часть энтропийного потенциала уже использовалась на пути E˙старта в качестве первичной энергии в ситуации, когда она передается в виде тепла, а оставшаяся часть энтропийного потенциала после процесса теплопередачи может быть использована в последующем процессы передачи энергии.Это может проиллюстрировать, почему важно видеть определенный процесс передачи в контексте общей цепочки обесценивания энергии, начиная с первичной энергии и заканчивая частью внутренней энергии окружающей среды. Подробнее об этой концепции см. [8] .

5. Конвективная теплопередача

Часто конвективная теплопередача происходит в технических приложениях, таких как электростанции, системы отопления или охлаждения. Затем задействуется второй поток энергии, который представляет собой рабочую скорость потока, которая необходима для поддержания потока, в котором или из которого происходит передача тепла.Этот поток энергии, применяемый в качестве работы, представляет собой чистую эксергию, которая теряется в процессе рассеяния во время конвективной теплопередачи.

5.1. Потери из-за рассеяния механической энергии

В гидромеханике потери в поле течения обычно характеризуются коэффициентом сопротивления cD для внешних потоков и коэффициентом потери напора K для внутренних потоков, которые представляют собой безразмерную силу сопротивления FD и безразмерную потерю давления Δp соответственно . В таблице 1 оба определения показаны вместе с альтернативным подходом, основанным на скорости генерации энтропии S˙g, D из-за рассеяния механической энергии (индекс: D).Подробнее об этом альтернативном подходе см. [10]. Поскольку оба коэффициента, cD и K, учитывают скорость диссипации Φ˙ в поле потока и согласно уравнению. (6) δΦ˙ = TdgS˙ диссипация механической энергии соответствует потере эксергии только при T = T∞, ср. экв. (7). Когда поток возникает при температуре, отличной от температуры окружающей среды T∞, cD и K учитывают рассеивание, но не потерю эксергии в потоке.

Тогда необходим второй коэффициент, который лучше всего определяется как число разрушения эксергии NE, аналогичное числу девальвации энергии, ур.(11), т.е.

традиционный подход альтернативный подход
внешний поток cD = FDρ2u∞2A cD = Tρ2u∞165 внутренний , D расход K = Δpρ2um2 K = Tρ2um3AS˙g, D

Таблица 1.

Коэффициенты сопротивления и потери напора; общепринятые и альтернативные определения из [10]. u∞: скорость набегающего потока, um: средняя скорость в поперечном сечении

, которая для внешнего потока с E˙ = u∞22m˙ = ρ2u∞3Ais (c.f. таблица 1):

NE = T∞TcD (число разрушения эксергии) E23

и для внутреннего потока с E˙ = um22m˙ = ρ2um3Ais (см. таблицу 1):

NE = T∞TK (число разрушения эксергии) E24

Примечание что NE не является числом девальвации энергии в смысле его определения в ур. (11) поскольку эталонная величина E˙in eq. (22) не является скоростью передачи энергии (которая может быть обесценена в процессе передачи). Вместо этого в конвективном процессе участвует кинетическая энергия. Он служит эталонной величиной для работы потока, необходимой для поддержания потока.

Отличается от Ни в соответствии с ур. (11), для которого по определению всегда выполняется 0≤Ni≤1, NE не ограничивается этим диапазоном. Например, NE = 3 для внутреннего потока означает, что потери эксергии (разрушение эксергии) во время этого процесса в три раза выше, чем кинетическая энергия, участвующая в конвективном процессе. Обратите внимание, что обесценивается не кинетическая энергия, а энергия, которая входит в систему в виде работы потока, являясь чистой эксергией вначале и частично или полностью преобразованной в анергию в процессе диссипации.

5.2. Оценка конвективной теплопередачи

Поскольку обе энергии в процессе конвективной теплопередачи (необходимая работа потока и передаваемая тепловая энергия) подвергаются обесцениванию, они обе должны учитываться при оценке процесса конвективной теплопередачи, например, с целью его оценки. оптимизация.

Что касается потерь, то учитывается потерянная эксергия обеих энергий, участвующих в процессе конвективной теплопередачи. Эти эксергетические потери характеризуются соответствующими скоростями образования энтропии S˙g, iin eq.(11) и S˙g, Din eq. (22). Они могут быть добавлены для обеспечения общей скорости генерации энтропии в процессе конвективной теплопередачи и служат в качестве целевой величины в процедуре оптимизации. Это разумный критерий для всех тех случаев, когда эксергетическая часть процесса передачи энергии учитывается как цикл мощности. В таком процессе эксергия, теряемая перед турбиной, не может быть преобразована в механическую энергию в турбине, что снижает эффективность энергетического цикла.

Когда скорость генерации энтропии должна быть определена из подробных численных решений процесса конвективной теплопередачи, S˙g, если следует из ур.(19), (20) в то время как S˙g из-за диссипации определяется как

S˙g = ∫ dgS (число разрушения эксергии) ˙E25

с

dgS˙ = μT (2 [(∂u∂x) 2+ ( ∂u∂y) 2+ (∂u∂z) ​​2] + (∂u∂y + ∂v∂x) 2+ (∂u∂z + ∂w∂x) 2+ (∂v∂z + ∂w∂y) 2) dVE26

Когда поток турбулентный, dgS˙ согласно ур. (19) и (26) подходят только для подхода прямого численного моделирования (DNS) в отношении турбулентности, как в примере, показанном в [11]. Поскольку решения DNS с их необычайной вычислительной потребностью не могут использоваться для решения технических проблем, вместо них решаются усредненные по времени уравнения (усредненные по Рейнольдсу Navier-Stokes: RANS).Затем также необходимо усреднить dgS˙ по времени, что приведет к:

dgS˙C = dgS˙C¯ + dgS˙C'E27

и

dgS˙D = dgS˙D¯ + dgS˙D'E28

с dgS˙ C¯ и dgS˙D¯ для генерации энтропии в усредненном по времени поле температуры и скорости, а также dgSÀC'и dgSÀD' для усредненных по времени вкладов соответствующих флуктуирующих частей.

Все четыре части равны

dgS˙C¯ = kT2 [(∂T¯∂x) 2+ (∂T¯∂y) 2+ (∂T¯∂z) 2] dVE29dgS˙C '= kT2 [(∂ T'∂x) 2¯ + (∂T'∂y) 2¯ + (∂T'∂z) 2¯] dVE30dgS˙D¯ = μT (2 [(∂u¯∂x) 2+ (∂u¯ ∂y) 2+ (∂u¯∂z) 2] + (∂u¯∂y + ∂v¯∂x) 2+ (∂u¯∂z + ∂w¯∂x) 2+ (∂v¯∂z + ∂ w¯∂y) 2) dVE31dgS˙D '= μT (2 [(∂u'∂x) 2¯ + (∂u'∂y) 2¯ + (∂u'∂z) 2¯] + (∂u '∂y + ∂v'∂x) 2¯ + (∂u'∂z + ∂w'∂x) 2¯ + (∂v'∂z + ∂w'∂y) 2¯) dVE32

с результатами для турбулентного поле потока из уравнений RANS, dgS˙C¯ и dgS˙D¯ может быть определено, но не dgS˙C 'и dgS˙D'.Для этих условий необходимы модели турбулентности, как, например, в [12].

5.3. Безразмерные параметры

Когда необходимо оценить весь процесс конвективной теплопередачи (включая потери эксергии в температуре и в поле потока), это опять же следует делать с помощью безразмерных параметров. Введены безразмерные параметры:

  • Число Нуссельта Nu / экв. (13), что указывает на силу теплопередачи по сравнению с ее необратимостью;

  • Число девальвации энергии Ni / экв.(11), что указывает на потерю энтропийного потенциала переданной энергии;

  • Коэффициент потери напора K / таблица 1, указывающая скорость рассеяния в поле потока;

  • Число разрушения эксергии NE / экв. (24), что указывает на потерю эксергии в поле течения.

Если теперь представляют интерес общие потери эксергии для процесса конвективной теплопередачи, то это, в основном, сумма эффектов, охватываемых Ni и NE. Однако поскольку оба параметра не обезразмериваются одинаково, их нельзя просто добавить.E = 0 для процесса, в котором вся эксергия теряется из-за ее преобразования в анергию.

6. Примеры

Будут приведены два примера, в которых параметры, которые были введены выше, будут использоваться для характеристики ситуации теплопередачи. С помощью этих примеров должно стать очевидным, что энтропию и / или ее образование не следует игнорировать, когда процессы теплопередачи рассматриваются в практических промышленных приложениях.

6.1. Полностью разработанная труба потока с теплопередачей

Этот простой пример может продемонстрировать, насколько важно учитывать генерацию энтропии, которая является ключевым аспектом в девальвационном числе энергии Nia согласно его определению (11).

То, что обычно можно найти в качестве характеристики теплопередачи полностью развитого трубного потока, - это число Нуссельта Nu. Предположим, что Nu = 100, и это происходит на верхнем температурном уровне энергетического цикла, то есть перед турбиной этого устройства преобразования энергии. Предположим также, что эта ситуация теплопередачи с Nu = 100 и тепловым потоком q˙w = 103 Вт / м2 на длине L = 0,1 происходит в двух разных энергетических циклах:

  • Паросиловый цикл (SPC) с водой в качестве рабочее тело и верхний температурный уровень Tm, u = 900 К.

  • Органический цикл Ренкина (ORC) с аммиаком Nh4 в качестве рабочего тела и верхним температурным уровнем Tm, u = 400 К.

Когда в обоих циклах Nu, q˙wand Lare одинаковы, разница температур ΔTin Nuaccording к эк. (13) для аммиака в 2,6 раза больше, чем для воды. Это связано с разными значениями теплопроводности k воды (при Tm, u = 900 K и p = 250 бар) и аммиака (при Tm, u = 400 K и p = 25 бар), принимая типичные значения для температуры и давления уровни в обоих циклах.

Для дальнейшего сравнения обратите внимание, что число обесценения энергии согласно ур. (11) в этом случае с dgS˙ согласно ур. (3) и интегрировали для получения

S˙g, i = Q˙w, i (1Tw − 1Tm, u) ≈Q˙w, i ΔTTm, u2E35

с E4 = Q˙wis

В таблице 2 показаны значения число девальвации энергии Ни для обоих случаев в соответствии с этим приближением. Он показывает, что только 0,37% энтропийного потенциала используется для теплопередачи в случае SPC, но почти 5% в случае ORC, «хотя» обе ситуации теплопередачи имеют одинаковое число Нуссельта Nu = 100 и одинаковое количество энергия передается.Обратите внимание, что только та часть энтропийного потенциала, которая еще не используется, доступна для дальнейшего использования после рассматриваемого процесса.

Цикл / жидкость кВт / м · K T∞K Tm, uK ΔTK SPC
300 900 10 0,0037
ORC / аммиак 0.038 300 400 26 0,049

Таблица 2.

Теплопередача при Nu = 100, q˙w = 103 Втм2, L = 0,1 мин, два разных цикла мощности

6.2. Использование CFD для оценки теплообменника

В предыдущем примере были рассмотрены два аналогичных процесса при двух разных уровнях температуры. Такой поток в трубе с теплопередачей является частью ситуации теплопередачи, показанной на рисунке 1: холодная сторона (b) нагревается.

Во втором примере вычислительная гидродинамика (CFD) используется для оценки нагрева жидкости в канале внутри пластинчатого теплообменника, пытаясь найти лучшую точку работы для устройства.Сначала мы опишем устройство и его моделирование, а затем обсудим результаты и способы их использования. Более подробную информацию можно найти в [14].

6.2.1. Геометрия устройства

Пластинчатые теплообменники состоят из гофрированных пластин, которые расположены в стопке пластин, образующих каналы между пластинами. Пластины сконструированы таким образом, что две жидкости отделяются друг от друга по пути через соседние каналы.

В зависимости от гофры пластины каналы имеют постоянно меняющееся сечение, но имеет повторяющийся геометрический рисунок.и период Λ; c.f. [15]

6.2.2. Моделирование устройства

Первое упрощение, сделанное для облегчения моделирования, состоит в том, что пластина (и, следовательно, теплообменник) предполагается иметь бесконечную длину. Таким образом, можно пренебречь воздействием на поток, вызываемым областями входа или выхода: поток развивается гидравлически. Это имеет два последствия:

  • канал можно смоделировать как бесконечно повторяющуюся полосу конечной длины, см. Рисунок 3 (a),

  • , только половина канала должна быть смоделирована, см. Рисунок 3 (b).

Результирующая геометрия домена показана на рисунке 4.

Рисунок 3.

Упрощенная геометрия теплообменника: (а) симметричная полоса; (б) область решения из-за предположения симметрии.

Рис. 4.

- вид полосы смоделированного пластинчатого теплообменника.

Второе упрощение, сделанное здесь, заключается в том, что теплообменник работает со сбалансированным противотоком: производительность потока m˙cp одинакова на горячей и холодной стороне, так что разница температур между ними, а также flux q˙ware одинаков во всех точках между входом и выходом.

6.2.3. Граничные условия

На основе предположений, сделанных выше, периодические граничные условия могут применяться к полю потока в основном направлении потока x (см. Рисунок 3). Граничное условие, применяемое по отношению к полю давления, представляет собой так называемое граничное условие «вентилятора», которое устанавливает постоянный перепад давления между впускным и выпускным участками. В плоскости симметрии накладывается граничное условие симметрии, а граничные условия прилипания выполняются на всех стенках.

Рисунок 5.

Общая скорость генерации энтропии S˙g, скорость генерации энтропии из-за диссипации S˙g, D и скорость генерации энтропии из-за проводимости S˙g, C (нормализованная с минимальной скоростью генерации энтропии при Re≈2000) при различных числах Рейнольдса , для моделирования прохода теплообменника.

Температурное поле имеет граничное условие вентилятора с положительной разностью температур ΔTio между впускным и выпускным участками. Это приводит к нагреванию жидкости, когда она проходит через симулированный проход.Граничное условие, используемое для верхней и нижней стенок, - это линейно возрастающий температурный профиль в среднем направлении потока. Увеличение температуры ΔTω, io совпадает с ΔTio. Вместе эти два граничных условия моделируют уравновешенную противоточную конфигурацию теплообменника. Граничное условие нулевого градиента используется для прокладки, которая моделируется как адиабатическая стенка.

Изменение перепада давления приводит к разной средней скорости потока. Чтобы сохранить постоянный тепловой поток q˙w, необходимо было соответственно отрегулировать разницу температур между входом и выходом (ΔTw, io = ΔTio = q˙wA / m˙cp).

6.2.4. Результаты моделирования

Результаты, полученные в результате моделирования CFD, дают доступ к полям скорости, давления и температуры u, p и T. Их можно использовать для расчета коэффициента теплопередачи и коэффициента потери напора для рассматриваемой конвективной теплопередачи.

Расчет полей давления и скорости - дорогостоящая часть моделирования. Когда предполагается, что все свойства жидкости постоянны, т.е. не зависят от давления и температуры, температурное поле можно даже смоделировать как пассивный скаляр, что требует очень небольших вычислительных затрат.Четыре части генерации энтропии (S˙g, C¯, S˙g, C ', S˙g, D¯, S˙g, D', см. Уравнения (29) - (32) в разделе 5.2. ) являются величинами постобработки: их можно получить из u-, p- и T-полей без решения дополнительных дифференциальных уравнений. Это полезно для оценки определенного процесса, работающего на разных уровнях температуры.

Скорость образования энтропии из-за рассеяния, проводимости и их сумма показаны на рисунке 5 для различных чисел Рейнольдса. Для увеличения числа Рейнольдса S˙g, Din уменьшается, а S˙g, C уменьшается.Оптимальная точка работы может быть определена примерно при Re = 2000. Такой же оптимум можно определить на рисунке 6 для числа девальвации энергии теплообменника Nhe, поскольку в уравнении. (11) тепловой поток, площадь стенки и температура окружающей среды одинаковы для всех расчетов.

Рис. 6.

Число девальвации энергии Nhe для смоделированного прохода пластинчатого теплообменника.

Обратите внимание, что кривые для S˙g, Cand S˙g, Din на рис. 5 являются почти прямыми линиями, особенно для более высоких чисел Рейнольдса.Следовательно, необходимы только два моделирования, чтобы приблизительно оценить оптимальную точку работы. Из двух прямых линий для S˙g, Cand S˙g, D сумма обоих результатов в виде кривой с минимумом при оптимальном числе Рейнольдса.

Как упоминалось ранее, генерация энтропии - это величина постобработки. Это может быть использовано для оценки смоделированной ситуации теплопередачи при различных уровнях температуры. Если общее изменение температуры между входом и выходом не слишком велико, можно сделать приближение, просто соответствующим образом масштабируя результаты.Генерация энтропии из-за диссипации S˙g, D, new на уровне температуры Tnewis (по сравнению с генерацией энтропии в существующем результате моделирования) S˙g, D, new / S˙g, D, sim = Tsim / Tnew. Если новый уровень температуры выше, S˙g, D, new будет меньше, чем S˙g, D, sim. Точно так же для генерации энтропии за счет проводимости соотношение S˙g, C, new / S˙g, C, sim = (Tsim / Tnew) 2. Опять же, если новый уровень температуры выше, S˙g, C, new будет меньше, чем S˙g, C, sim. Оптимальная точка работы смещается к более низкому числу Рейнольдса (см. Рисунок 7), потому что влияние изменения уровня температуры на S˙g, C больше, чем влияние на S˙g, D.

Рис. 7.

Скорость генерации энтропии для теплопередачи при различных уровнях температуры. При более высоких температурах оптимальная рабочая точка смещается в сторону более низких чисел Рейнольдса.

7. Выводы

Несмотря на очевидную низкую популярность, генерация энтропии является важным аспектом любого процесса теплопередачи. Каждый реальный технический процесс включает в себя генерацию энтропии, которую в какой-то момент нужно выпустить в окружающую среду. Было показано, что каждый поток энергии имеет энтропийный потенциал, который представляет собой количество энтропии, которая может быть выброшена в окружающую среду вместе с потоком энергии.Поэтому он устанавливает предел для всех необходимых процессов, связанных с этим потоком энергии. На основании этого был введен показатель девальвации энергии , который количественно определяет часть энтропийного потенциала, которая теряется в процессе передачи. Число девальвации энергии применимо ко всем процессам, в которых передается энергия, и рекомендуется для их оценки, особенно в отношении устойчивости.

На примерах также было показано, как различные ситуации теплопередачи можно сравнивать друг с другом.Такие сравнения могут проводиться на самых разных уровнях, начиная от оценки системы (т.е. для сравнения различных систем) и заканчивая более подробными исследованиями, касающимися оптимизации подсистем, которые являются частью общей системы теплопередачи. Также было показано, как существующие результаты моделирования могут быть повторно использованы при различных уровнях температуры, эффективно снижая стоимость моделирования CFD.

.

Как нагрев и нагрузка влияют на срок службы батареи

Узнайте о температуре и о том, как старт-стоп сокращает срок службы стартерной батареи.

Тепло убивает все батареи, но не всегда удается избежать высоких температур. Это случай с аккумулятором внутри ноутбука, стартерным аккумулятором под капотом автомобиля и стационарными аккумуляторами в жестяном укрытии под палящим солнцем. Как правило, каждое повышение температуры на 8 ° C (15 ° F) сокращает срок службы герметичной свинцово-кислотной батареи вдвое.Это означает, что аккумулятор VRLA для стационарных применений, рассчитанный на 10 лет при 25 ° C (77 ° F), будет работать только 5 лет при постоянном воздействии 33 ° C (92 ° F) и 30 месяцев при постоянном хранении в пустыне. температура 41 ° C (106 ° F). Если аккумулятор поврежден из-за перегрева, емкость не может быть восстановлена.

Согласно исследованию режима отказа BCI 2010 года, стартерные батареи стали более термостойкими. В исследовании 2000 года повышение температуры на 7 ° C (12 ° F) повлияло на срок службы батареи примерно на один год; в 2010 г. допуск к жаре был увеличен до 12 ° C (22 ° F).Другие статистические данные показывают, что в 1962 году стартерная батарея прослужила 34 месяца; технические усовершенствования увеличили продолжительность жизни в 2000 году до 41 месяца. В 2010 году BCI сообщила, что средний возраст стартерных батарей составляет 55 месяцев, при этом более холодный Север - 59 месяцев, а более теплый Юг - 47 месяцев. Из разговорных свидетельств 2015 года выяснилось, что батарея, хранившаяся в багажнике автомобиля, прослужила на год дольше, чем в моторном отсеке.

Срок службы батареи также зависит от активности, и срок службы сокращается, если батарея подвергается нагрузке из-за частой разрядки.Проворачивание двигателя несколько раз в день вызывает небольшую нагрузку на стартерную батарею, но это меняет режим работы микрогибрида «старт-стоп». Микрогибрид выключает двигатель внутреннего сгорания (ДВС) на красный свет светофора и перезапускает его, когда движение возобновляется, в результате чего происходит около 2000 микроциклов в год. Данные, полученные от производителей автомобилей, показывают снижение мощности примерно до 60 процентов после 2 лет использования. Для увеличения срока службы автопроизводители используют специальные системы AGM и другие системы. (См. BU-211: Альтернативные аккумуляторные системы.)

На рисунке 1 показано падение емкости со 100 процентов до примерно 50 процентов после того, как батарея была подвергнута 700 микроциклам. Испытание на моделирование старт-стоп было проведено в лабораториях Cadex. CCA остается высоким и показывает снижение только примерно после 2000 циклов.

Рис. 1: Падение емкости стартерной батареи в конфигурации старт-стоп. Емкость падает примерно до 50 процентов после 2 лет использования.Аккумулятор AGM более прочный.

Предоставлено Cadex, 2010 г.

Метод испытаний: Батарея была полностью заряжена, а затем разряжена до 70%, чтобы напоминать
.

Расчет мощности центрального отопления

Расчет тепловой мощности вашего дома

Никто не хочет сталкиваться с нехваткой тепла или тратить деньги на отопительное оборудование, которое не удовлетворяет потребности в тепле, особенно в разгар зимних морозов. Это небольшое руководство о том, как рассчитать мощность центрального отопления в вашем доме, поэтому вы получите бойлер или тепловой насос, которые будут соответствовать вашим предпочтениям и потребностям, максимально эффективно используя устройство центрального отопления.Эта мера поможет вам более эффективно использовать энергию, как и другие меры по обеспечению устойчивости и зеленой энергии.

Что следует учитывать при оценке мощности центрального отопления?

Тепловая мощность источников тепла: котел, тепловой насос, газовая печь и др. Она должна при ограниченном расходе топлива (электричество, газ) обеспечивать минимально необходимый запас тепла в самые холодные зимние недели.

Количество и размер теплораспределительных устройств: количество конвекторов и радиаторов (а также количество радиаторных секций), площадь полов с подогревом и т. Д.

Диаметр труб , по которым теплоноситель системы центрального отопления будет транспортироваться и распределяться к отопительным приборам.

Источники топлива для центрального отопления

В контексте текущих эксплуатационных расходов, природный газ может оказаться наименее дорогим вариантом, когда дело доходит до источников топлива для центрального отопления, особенно если используется конденсационный котел, который способен преобразовывать почти 90% топлива, которое он потребляет, в обогрев.Тем не менее, уже не секрет, что цены на газ в ближайшем будущем вырастут из-за ограниченных запасов газа во всем мире и из-за постоянно растущего спроса на чистый природный газ.

После газа, уголь и древесина считаются оптимальными вариантами, когда речь идет о рентабельных источниках тепла. Помимо того, что котел на древесных гранулах или биомассе считается экологически чистым, он идеально подойдет тем домохозяйствам, которые используют биомассу в качестве источника тепла. Проблема с твердотопливными котлами состоит в том, что они нуждаются в постоянном обслуживании - котел необходимо топить ежедневно, желательно два раза в день, если вы хотите избежать перебоев в подаче центрального отопления.Однако, установив аккумулятор тепла, можно до минимума сократить объем работ, необходимых для эксплуатации котла на древесных гранулах. Обычно он входит в состав новейших систем отопления на биомассе, которые в настоящее время доступны на рынке (в зависимости от производителя).

Когда дело доходит до электричества в качестве источника энергии для системы центрального отопления, наиболее разумный способ сделать это (учитывая, что основная цель - сэкономить на счетах за отопление) - это использовать тепловой насос.Это может быть тепловой насос воздух-воздух, воздух-вода или грунтовый тепловой насос. Их электрические и тепловые входы различаются от 3 до 6 раз, что позволяет тепловому насосу обеспечивать максимальный КПД 300%. Тем не менее, вы должны иметь в виду, что эффективность тепловых насосов воздух-воздух и воздух-вода снижается с понижением уровня внешней температуры.

Измерение теплопроизводительности

Первый и самый простой метод расчета тепловой мощности вашего дома изложен в основах «Строительных норм»: для отопления каждых 10 квадратных метров вашего дома потребуется один киловатт тепла.Следовательно, для отопления дома площадью 100 квадратных метров нужно будет искать тип котла на 10 кВтч. Однако использование этого метода приведет к несколько ненадежным данным, так как:

  • объем воздуха при высоте потолка 2,5 м и 4,5 м будет отличаться, мягко говоря. Более того, теплый воздух неизбежно будет собираться вплотную к потолку.
  • : потеря тепла через стены и потолок больше, когда разница между температурой внутри и снаружи большой.
  • по теплопроницаемости окна и двери значительно отличаются от стен и потолка.
  • на измерение теплоемкости сильно влияет тип измеряемого объекта - будь то частный дом или квартира. Положения строительных норм и правил одинаковы для всех типов недвижимости. При этом потери тепла в доме будут намного больше, чем в квартире.

Итак, как более точно рассчитать теплопроизводительность своего дома и ответить на вопрос «какой размер котла мне нужен?»

  • Для нагрева одного кубометра воздуха достаточно 40 Вт тепловой мощности.
  • Каждое окно добавляет дополнительные 100 Вт тепловой мощности. Каждая дверь по 200 Вт.
  • Для домов типовой коэффициент измерения теплопроизводительности составляет 1,5, а для 2-4-х комнатной квартиры - 1,2-1,3, в зависимости от толщины и материала стен.
  • Учитывается и погодный коэффициент региона. Он составляет около 0,9 для северной части Шотландии и 0,8 для остальной части Великобритании.
Пример

В качестве примера определения потребности в тепле для дома мы рассчитаем теплопроизводительность одного этажа (дома) со следующими размерами: длина: 12 м, ширина: 6.5 м, высота: 3,2 м, с 4 окнами и 2 дверями, расположен на юге Великобритании. Расчет выглядит следующим образом:

  1. Площадь этажа: 12 * 6,5 = 78 кв.м
  2. Объем: 78 * 3,2 = 249,6 м3
  3. Величина требуемой тепловой мощности: 249,6 * 40Вт = 9984 Вт
  4. Четыре окна добавят еще 400 Вт, а две двери добавят еще 400. 9984 + 400 + 400 = 10,784 Вт
  5. Так как это дом, мы используем коэффициент нагрева 1.5: 10,784 * 1,5 = 16,176 Вт
  6. Учитывая, что дом расположен на юге, мы применяем погодный коэффициент 0,8: 16,176 * 0,8 = 12 940,8 Вт.
Таким образом, чтобы обеспечить эффективное отопление площади этого дома (L-12 м, W-6,5 м) с высотой потолка 3,2 м, потребуется котел или тепловой насос с тепловой мощностью около 13 кВтч. .

* Это приблизительная оценка, поэтому приведенные цифры не следует принимать как должное. На конечные результаты может повлиять ряд факторов, таких как изоляция дома, материалы, из которых он сделан, стойкий микроклимат и т. Д.Поэтому мы советуем обсудить эти детали с поставщиком котла / теплового насоса, прежде чем приобретать устройство центрального отопления, и использовать калькулятор размера котла.

Нагревательные приборы

Используя ту же методику расчета, следует определить тепловую мощность каждой комнаты в доме. По результатам можно выбрать наиболее подходящее устройство распределения тепла (т.е. радиатор, конвектор, фанкойл).

Чтобы узнать, сколько тепла может отдавать радиатор, следует проверить некоторые технические параметры радиатора:

  • Технический паспорт устройства (технический паспорт), который должен быть предоставлен производителем.
  • Мощность радиаторов отопления на сайте производителя.

Большинство производителей радиаторов и конвекторов отмечают, что разница между температурой в помещении и температурой нагревательного устройства составляет около 70 градусов Цельсия (C). Это означает, что при комнатной температуре 20 ° C температура радиатора должна быть около 90 ° C. Тем не менее, реальные значения могут отличаться от технических характеристик производителя.

Таким образом, если рассматривать технические характеристики (приблизительные оценки) различных типов радиаторов со стандартным расстоянием 50 см между центром радиатора и его шлангами, мы получаем следующие числа:

  • Секция из чугуна дает около 140 Вт тепла при разнице температур 70 градусов Цельсия в помещении.
  • Тепловая мощность биметаллической секции составляет около 180 Вт.
  • Алюминиевый радиатор может обеспечить около 190-210 Вт для каждой своей секции. Учитывая относительно низкие цены на алюминиевые радиаторы и их надежность при интеграции в систему центрального отопления, неудивительно, почему так много владельцев недвижимости выбирают их.

Получите расценки на отопительные приборы!

Если вы решили приобрести бойлер или тепловой насос, но не уверены, какой тип вам нужен, мы готовы вам помочь.Заполните форму на этой странице, указав свои личные предпочтения и информацию, и мы предоставим вам до четырех различных поставщиков котлов / тепловых насосов. Вы можете выбрать предложение, которое наилучшим образом соответствует вашим потребностям. Услуга бесплатная, без обязательств и занимает всего несколько минут.

.

Улучшение теплопередачи с помощью ультразвука: обзор и последние достижения

В этой статье обобщены некоторые применения ультразвуковых колебаний в отношении методов улучшения теплопередачи. Обзор исследовательской литературы с особым вниманием к примерам использования ультразвуковой технологии наряду с традиционным процессом теплопередачи с целью его улучшения. В нескольких промышленных приложениях использование ультразвука часто является способом повышения производительности самого процесса, но также позволяет использовать преимущества различных последующих явлений.Соответствующий пример, приведенный здесь, касается теплообменников, где было обнаружено, что ультразвук не только увеличивает скорость теплопередачи, но также может быть решением для уменьшения загрязнения.

1. Введение

В инженерных приложениях ультразвук помогает повысить эффективность систем. Интенсификация химических реакций, сушка, сварка и очистка относятся к различным возможным применениям ультразвуковых волн [1]. Аналогичное наблюдение можно сделать для процессов теплопередачи, которые повсеместно используются в отрасли: системы охлаждения, теплообменники, регулирование температуры и т. Д.Логично и естественно задаться вопросом, каким может быть влияние ультразвука на системы теплопередачи. Как ни странно, до недавнего времени эта тема не была предметом глубоких исследований.

Похоже, что исследования, предпринятые в прошлом, касались основных систем, обычно с одной жидкостью, таких как нагревательные стержни или стенки в объеме воды, подвергающемся ультразвуковым колебаниям. Имеется тенденция к усложнению систем (например, охлаждение крошечных компонентов, вибрирующих конструкций для теплообменников) и к повышению точности моделей с помощью мощного численного моделирования.

Цели данной статьи - предоставить научную и историческую основу для будущих исследований, касающихся улучшения теплопередачи с помощью ультразвуковых колебаний, и представить развитие этой области с несколькими примерами приложений. В первой части дается обзор ультразвука, индуцированных явлений и их положительного влияния на процессы теплопередачи. Затем анализируются примеры из различных областей интересов (теплотехника, пищевая промышленность, экспериментальное и численное моделирование).Особое внимание уделяется лучшим улучшениям и полученным результатам. Наконец, недавняя адаптация ультразвуковых технологий к теплообменным устройствам подробно обсуждается с примерами, взятыми из новых патентов и текущих лабораторных работ.

2. Общие сведения об УЗИ
2.1. Стандартная классификация по мощности, частоте и использованию

Акустические волны, частоты которых выше верхнего предела диапазона человеческого слуха, обычно около 16 или 20 кГц, называются ультразвуком.Эти волны часто классифицируют по их частоте или мощности.

В диапазоне от 20 до примерно 100 кГц волны определяются как «низкочастотный ультразвук» или «мощный ультразвук». Действительно, он обычно передается на высоком уровне мощности (несколько десятков ватт), и поэтому ультразвук способен изменять среду, в которой он распространяется. Мощный ультразвук может разрушить объем жидкости, чтобы создать кавитацию или акустическое течение, два явления с мощными макроскопическими эффектами для улучшения теплопередачи.Таким образом, мощный ультразвук находит применение в различных процессах, таких как очистка, сварка пластмасс, сонохимия [1] и так далее. Также он обычно используется для интенсификации процессов тепломассопереноса.

Далее в частотном спектре выше 1 МГц обнаруживается «ультразвук малой мощности» (обычно менее 10 Вт) на «очень высокой частоте», которая не влияет на среду распространения. Следовательно, он особенно используется для медицинской диагностики или неразрушающего контроля материалов, и в литературе очень мало ссылок на улучшение теплопередачи.

В промежуточном диапазоне от 100 кГц до 1 МГц обнаруживается «высокочастотный ультразвук». Он меньше используется, чем мощный ультразвук, для улучшения теплопередачи. На рисунке 1 показаны некоторые типичные варианты использования ультразвука в зависимости от частоты и мощности. Подробное описание развития ультразвуковых технологий можно найти в литературе [1, 2].


2.2. Распространение ультразвука и индуцированные эффекты

Многие явления могут возникать в результате распространения ультразвуковой волны в жидкости и, в частности, в жидкой среде.Двумя из них, имеющими большое значение для улучшения теплопередачи, являются акустическая кавитация и акустическое течение. Существуют и другие последующие эффекты, такие как нагрев среды из-за рассеяния механической энергии. Это явление используется для определения ультразвуковой энергии, подводимой к среде в ультразвуковом реакторе, известном как калориметрический метод [1]. При использовании высокочастотного ультразвука также может появиться акустический фонтан на границе раздела жидкость-газ. Именно на этой границе раздела могут быть достигнуты температуры до 250 ° C [3].Лаборде и др. . [4] предоставил общее описание и математическое моделирование некоторых явлений, возникающих в результате распространения ультразвука в жидкости. На рисунке 2 показаны некоторые из этих важных эффектов, которые могут возникать в жидкости.


Эти явления всегда вызывали интерес с момента их открытия, и хотя исследования все еще продолжаются, некоторые авторы сделали подробные описания, которые часто обновляются [1, 4].Таким образом, в данной статье рассматриваются только два важных явления: акустическое течение и акустическая кавитация, рассматриваемые с точки зрения теплопередачи.

2.2.1. Акустический поток

Акустический поток можно рассматривать как хорошо известное явление с момента его подробного математического описания Лайтхиллом в 1978 году [5]. Он объяснил, что акустическое течение возникает из-за рассеяния акустической энергии, которая допускает градиенты количества движения и, следовательно, потоков жидкости.Райли [6] также проводит различие между течением кварцевого ветра в объеме жидкости и потоком Рэлея, расположенным в пограничных слоях и на границах раздела твердое тело-жидкость. Скорость, набираемая жидкостью, позволяет улучшить коэффициент конвективной теплопередачи вблизи твердых границ, что иногда приводит к турбулентности и повышению скорости теплопередачи (Рисунок 3).


Фанд и Каве [7] предвидели в 1960 году возможное влияние акустического потока на интенсификацию теплопередачи и исследовали то, что было названо «термоакустическим потоком», более сильным явлением потока, чем изотермическое акустическое течение.

Акустическое течение (вынужденное воздушное течение) создавалось в воздухе над вибрирующей балкой [8, 9]. Достаточно было левитировать маленькие объекты и заставлять их вращаться вокруг себя, тем самым вычисляя скорость потока. Температура объекта над балкой была чувствительно снижена, а коэффициент конвективной теплопередачи вокруг нее был увеличен пропорционально скорости потока. Это первый интересный пример того, как акустический поток может изменять коэффициенты теплопередачи.

Акустический поток также является фактором, сокращающим время плавления парафина [10]. Его влияние изучалось отдельно и описывалось как аналог вынужденной конвекции, независимо от профиля поля стоячих волн. Накагаве [11] даже удалось смоделировать и управлять потоком, вызываемым 4 вибраторами, что позволило выбрать зону, которая должна быть охлаждена акустической струей.

Тип конфигурации, часто изучаемый, представляет собой передачу тепла, происходящую в канале, образованном двумя пластинами или балками при разных температурах, с вибрациями, приложенными либо к жидкости между стенками, либо к одной из стенок [12–14].

Типичный порядок величины скорости акустического потока обычно составляет несколько сантиметров в секунду (от 1 до 100 см · с −1 ) [9, 15], но также кажется, что она немного меняется в зависимости от мощности и частоты ультразвука [16 ].

2.2.2. Акустическая кавитация

Акустическая кавитация - это основное явление, которое может возникнуть при распространении ультразвуковых волн в жидкости. Многие авторы подробно описали процесс кавитации, но не всегда, возникающий в поле осциллирующего давления, в этом частном случае называют акустической кавитацией [17, 18].Это образование, рост, колебания и мощное схлопывание пузырьков газа в жидкость. При определении акустической кавитации необходимо также точно описать экспериментальные условия, при которых она возникает (растворение газа, температура, давление и т. Д.), Поскольку она зависит от нескольких параметров. Когда локальное давление снижается до уровня ниже давления пара в течение периода разрежения звуковой волны, статическое давление и силы сцепления преодолеваются, и образуются пузырьки газа.Обычно они будут колебаться, расти, а затем резко разрушаться [19, 20].

Есть много других способов создания кавитации в жидкости, например, гидродинамическая кавитация с использованием микроканалов, которые также могут способствовать передаче тепла при охлаждении [21]. Подробные сведения об акустической кавитации в чистой воде можно найти в [22].

Существует два типа акустической кавитации: устойчивая и нестационарная [18, 23, 24]. Когда пузырьки колеблются около равновесного размера, это называется стабильной кавитацией.Когда они существуют менее одного цикла, они представляют собой переходные полости. Другой важный факт заключается в том, что сжатие паровой полости более интенсивно, чем газонаполненной, потому что, когда пар превращается в жидкость, нет остаточного газа, который смягчал бы схлопывание пузырька. Некоторые экспериментальные результаты и фотографические исследования показали, что удар схлопывающегося кавитационного пузыря может длиться 10 −7 с, достигая локального давления до 193 МПа [23]. Это объясняет многие явления, связанные с химией, биологией, инженерией [25] и так далее.Это также объясняет, почему акустическая кавитация считается основным эффектом улучшения ультразвуковой теплопередачи. Действительно, схлопывание пузырьков вблизи границы раздела твердое тело-жидкость разрушает тепловые и скоростные пограничные слои, снижая тепловое сопротивление и создавая микротурбулентность, как схематически показано на рисунке 4.


Обычно предполагается, что схлопывание пузырьков имеет порядок микросекунды, а размер пузырька составляет около 10 −4 м (но также зависит от частоты) [1].Таким образом, порядок величины скорости смещения частиц при схлопывании пузыря можно оценить примерно в 100 м / с -1 . Между скоростью акустического потока и скоростью микротурбулентности примерно 2–3 порядка величины. Это одна из причин, по которой акустическая кавитация часто рассматривается как основная причина улучшения теплопередачи с помощью ультразвука. Его также можно использовать как способ стимулировать или контролировать турбулентность, что уже предполагает некоторое возможное использование в теплообменных устройствах.Можно уменьшить трение потока около границ [26].

3. Влияние ультразвука на теплообмен
3.1. История

Необходимо вернуться в 60-е годы, чтобы найти первые опубликованные исследования, посвященные интенсификации теплопередачи с использованием ультразвуковых колебаний. Эти новаторские исследования (см. Также раздел 3.3.1) часто давали интересные результаты, но, к сожалению, недостаточно многообещающие, чтобы привести к более глубоким исследованиям. В то же время, вероятно, были разработаны совершенно другие техники (например,g., уменьшение размера канала). Таким образом, эта тема была полностью забыта до 90-х годов, когда к ней вернули интерес с растущей тенденцией к созданию все более эффективных устройств для управления энергопотреблением. График, представленный на Рисунке 5, показывает количество публикаций, посвященных повышению теплопередачи с помощью ультразвука, найденных в библиографических базах данных, таких как Scopus и Google Scholar, за 10-летний период с 1960 года. Учитываются ссылки, указанные во всех таблицах этого документа. документ.Раньше этой даты их трудно найти, даже если они существуют.


В 70–80-е годы было опубликовано очень мало работ, но с 90-х годов произошло значительное их увеличение. Исходя из этой тенденции, можно ожидать, что в ближайшие годы эта тема, вероятно, получит существенное развитие.

Среди трех режимов теплопередачи, проводимость и излучение с помощью ультразвука менее изучены. Как ни странно, их исследовали лишь несколько авторов, хотя многообещающие результаты были представлены еще в 1979 г. Фэрбенксом [27].Он обнаружил, что комбинация излучения (искусственного или естественного) и ультразвука для нагрева текущей жидкости приводит к лучшим результатам, чем сумма каждого процесса в отдельности; кроме того, металлическая проводимость может быть увеличена в 2,25–5,55 раза. И наоборот, при плавлении парафина, когда проводимость преобладала над конвекцией, Oh et al. обнаружено небольшое влияние ультразвука [10]. Это различие может быть связано с природой материалов (парафин и металлы), которые совершенно по-разному реагируют на вибрации.Номура и Накагава [15] изучали усиление теплопередачи с помощью кавитации и акустического обтекания узкой поверхности, где проводимость также имела большое значение. Чтобы количественно оценить интенсивность кавитации, они измерили скорость потери массы алюминиевой фольги толщиной 15 мкм и м. Микроструи, вызванные кавитацией, увеличивали кажущуюся теплопроводность, но они были настолько мощными, что эрозия была бы проблемой (например, при охлаждении микроэлектронных компонентов). На очень узкой поверхности проводимость всегда преобладала над конвекцией.

3.2. Теплообмен с фазовым переходом
3.2.1. Таяние и затвердевание

Мощный ультразвук - это метод уменьшения размера кристаллов льда на замороженных продуктах и ​​повышения их качества [28]. Это приводит к образованию мельчайших кристаллов льда и сокращает время между началом кристаллизации и полным образованием

.

Смотрите также