(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Класс прочности трубы


📌 класс прочности труб - это... 🎓 Что такое класс прочности труб?

  • Класс прочности — 3.3. Класс прочности установленное стандартом нормируемое значение физического или условного предела текучести стали. Источник: ГОСТ 10884 94: Сталь арматурная термомеханически упрочненная для железобетонных конструкций. Технические условия …   Словарь-справочник терминов нормативно-технической документации

  • класс — 3.7 класс : Совокупность подобных предметов, построенная в соответствии с определенными правилами. Источник: ГОСТ Р 51079 2006: Технические средства реабилитации людей с ограничениями жизнедеятельности. Классификация …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52079-2003: Трубы стальные сварные для магистральных газопроводов, нефтепроводов и нефтепродуктопроводов. Технические условия — Терминология ГОСТ Р 52079 2003: Трубы стальные сварные для магистральных газопроводов, нефтепроводов и нефтепродуктопроводов. Технические условия оригинал документа: 3.1 высокочастотная контактная сварка (ВЧС): Сварка с применением давления, при… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 31447-2012: Трубы стальные сварные для магистральных газопроводов, нефтепроводов и нефтепродуктопроводов. Технические условия — Терминология ГОСТ 31447 2012: Трубы стальные сварные для магистральных газопроводов, нефтепроводов и нефтепродуктопроводов. Технические условия оригинал документа: 3.1 высокочастотная контактная сварка; ВЧС: Сварка с применением давления, при… …   Словарь-справочник терминов нормативно-технической документации

  • СТО Газпром 2-2.2-136-2007: Инструкция по технологиям сварки при строительстве и ремонте промысловых и магистральных газопроводов. Часть I — Терминология СТО Газпром 2 2.2 136 2007: Инструкция по технологиям сварки при строительстве и ремонте промысловых и магистральных газопроводов. Часть I: 3.1.1 автоматическая сварка: Дуговая сварка, при которой возбуждение дуги, подача сварочной… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 53580-2009: Трубы стальные для промысловых трубопроводов. Технические условия — Терминология ГОСТ Р 53580 2009: Трубы стальные для промысловых трубопроводов. Технические условия оригинал документа: 4.1 бесшовная труба; БТ: Труба без сварного шва, полученная по технологии формообразования в горячем состоянии, после которого… …   Словарь-справочник терминов нормативно-технической документации

  • отбор — 05.02.18 отбор (радиочастотная идентификация) [selection]: Операция запроса ответа конкретной радиочастотной метки или группы радиочастотных меток, осуществляемая устройством считывания/опроса. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Требования — 5.2 Требования к вертикальной разметке 5.2.1 На поверхность столбиков, обращенную в сторону приближающихся транспортных средств, наносят вертикальную разметку по ГОСТ Р 51256 в виде полосы черного цвета (рисунки 9 и 10) и крепят световозвращатели …   Словарь-справочник терминов нормативно-технической документации

  • 2: — Терминология 2: : Активирующее излучение Излучение, после воздействия которого материал становится радиоактивным Определения термина из разных документов: Активирующее излучение 4.27 антропометрическая точка (anthropometric landmark): Контрольная …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования — Терминология ГОСТ Р 54382 2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа: 3.39 J труба (J tube): Установленная на платформе J образная труба, которая образует райзер… …   Словарь-справочник терминов нормативно-технической документации

normative_reference_dictionary.academic.ru

📌 класс прочности трубы - это... 🎓 Что такое класс прочности трубы?

  • Класс прочности — 3.3. Класс прочности установленное стандартом нормируемое значение физического или условного предела текучести стали. Источник: ГОСТ 10884 94: Сталь арматурная термомеханически упрочненная для железобетонных конструкций. Технические условия …   Словарь-справочник терминов нормативно-технической документации

  • Класс прочности цемента — – условное обозначение одного из значений параметрического ряда по прочности цемента (МПа) в максимальные сроки, установленные нормативным документом. [ГОСТ 30515 2013] Класс прочности цемента – класс прочности на сжатие. [EN 197 1]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Класс прочности — – арм. установленное стандартом нормируемое значение предела текучести, Н/мм2. [СТО АСЧМ 7 93] Класс прочности стали арматурной – установленное стандартом нормируемое значение физического или условного предела текучести стали. [ГОСТ 10884… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • класс прочности труб — 3.15 класс прочности труб: Прочность металла труб, оцениваемая временным сопротивлением σв и обозначаемая символами от К34 до К60, что соответствует нормативным значениям σв, (кгс/мм2). Источник …   Словарь-справочник терминов нормативно-технической документации

  • промежуточный класс прочности — 4.20 промежуточный класс прочности: Класс прочности между классами прочности, указанными в настоящем стандарте. Источник: ГОСТ Р 53580 2009: Трубы стальные для промысловых трубопроводов. Технические условия …   Словарь-справочник терминов нормативно-технической документации

  • класс — 3.7 класс : Совокупность подобных предметов, построенная в соответствии с определенными правилами. Источник: ГОСТ Р 51079 2006: Технические средства реабилитации людей с ограничениями жизнедеятельности. Классификация …   Словарь-справочник терминов нормативно-технической документации

  • Класс бетона по прочности на сжатие — (В) нормированное значение прочности RN, задаваемое с обеспечиваемостью 0,95 и определяемое по соотношению: R£ = R(1 1,64 CV), где Cv коэффициент вариации прочности, a R среднее значение прочности образцов – кубов размером 150 мм. [Ушеров… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Класс бетона по прочности — (EN206 1) величина, соответствующая гарантированной прочности при сжатии, выражаемая символом С для тяжелых бетонов, символом LC для легких бетонов с числами, обозначающими нормативное сопротивление и прочность образцов цилиндров размером… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Класс бетона — Класс бетона – показатель качества бетона по прочности на сжатие по прочности на осевое растяжение (по прочности на осевое растяжение назначается в случаях, когда эта характеристика имеет главенствующее значение и контролируется на… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Класс ячеистого бетона по прочности на сжатие — – значение кубиковой прочности бетона на сжатие стобеспеченностью 0,95 (нормативная кубиковая прочность). [ГОСТ 31359 2007] Рубрика термина: Легкие бетоны Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

normative_reference_dictionary.academic.ru

Трубы для магистральных газо- и нефтепроводов

– диаметр 508-1420 мм, применяются для строительства магистральных газо- и нефтепроводов и других трубопроводов

  • Трубы стальные сварные прямошовные диаметром 508 — 1420 мм с толщиной стенки до 48 мм сваренные под слоем флюса;
  • Стальные электросварные прямошовные трубы диаметром 530 мм сваренные токами высокой частоты.

Электросварные трубы диаметром 508-1420 мм предназначены для строительства магистральных газопроводов, нефтепроводов и нефтепродуктопроводов, рассчитанных на рабочее давление до 12,5 МПа включительно, в том числе и подводных. Высокий уровень механических свойств основного металла и сварного шва труб позволяют использовать их для строительства трубопроводов в различных климатических зонах, включая районы Крайнего Севера.

Электросварные трубы диаметром 508 — 1420 мм выполняются электродуговой сваркой под флюсом с одним продольным швом и наружным антикоррозионным покрытием. Также производятся трубы диаметром 530 мм, сваренные токами высокой частоты с одним прямым швом и наружным антикоррозионным покрытием. В зависимости от марок стали трубы могут изготавливаться с повышенной коррозионной стойкостью и хладостойкостью, с повышенными эксплуатационными характеристиками при температуре эксплуатации до минус 60°С.

Сортамент и область применения Нормативный документ Наружный диаметр, мм Толщина стенки, мм Класс прочности, марка стали Область применения труб
ТУ 14-3-1573-96 530

630

720

820

1 020

7,0 — 24,0

7,0 — 24,0

7,3 — 30,0

8,0 — 30,0

8,8 — 32,0

Класс прочности

К50-К60

Для строительства газопроводов, нефтепроводов и нефтепродуктопроводов в северном и обычном исполнении на рабочее давление 5,4-9,8 МПа
ТУ 39-0147016-123-2000 530

630

720

820

1 020

7,0 — 16,0

7,0 — 16,0

7,0 — 16,0

8,0 — 16,0

10,0 — 16,0

Класс прочности К52

Сталь 09ГСФ

Для сооружения газопроводов, нефтепроводов, технологических и промысловых трубопроводов, транспортирующих нефть и нефтепродукты, содержащих сероводород до 6 об.%, водоводов, а также предназначенные для нанесения наружного и внутреннего антикоррозионного покрытия. Трубы повышенной коррозионной стойкости и хладостойкости на рабочее давление до 7,4 МПа.
ТУ 39-0147016-103-2000 530

630

720

820

1 020

7,0 — 24,0

7,0 — 24,0

7,3 — 30,0

8,0 — 30,0

8,8 — 32,0

Класс прочности

К48-К52

Сталь Ч-09СФ

Для сооружения газопроводов, нефтепроводов, технологических и промысловых трубопроводов, транспортирующих нефть и нефтепродукты, содержащие сероводород до 6 об%, водоводов, а также предназначенные для нанесения наружного и внутреннего покрытия. Трубы повышенной коррозионной стойкости и хладостойкости на рабочее давление до 7,4 МПа для ОАО «Сургутнефтегаз».
ТУ 14-ЗР-21-96 530

630

720

820

1 020

11,0 — 24,0

11,0 — 24,0

11,0 — 30,0

11,0 — 30,0

11,0 — 32,0

Класс прочности К45

Сталь 14ГБ-Ш

Для транспортировки природного газа с рабочим давлением 5,5 — 12,5 МПа с низким и средним содержанием сероводорода по газопроводам внутри газодобывающих предприятий до крупных потребителей, расположенных вне районов Крайнего Севера.
ТУ 14-ЗР-28-99 530

630

720

820

1 020

7,0 — 24,0

8,0 — 24,0

8,0 — 26,0

9,0 — 26,0

10,0 — 26,0

Класс прочности

К52-К60

Сталь 06ГФБАА

Для строительства магистральных нефтепроводов, газопроводов и нефтепродуктопроводов на рабочее давление до 9,8 МПа. Трубы повышенной хладостойкости.
ТУ 14-ЗР-45-2001 530

630

720

820

1 020

8,0 — 16,0

8,0 — 16,0

8,0 — 16,0

9,0 — 16,0

10,0 — 16,0

Класс прочности К54 Для строительства магистральных, в том числе надземных, газопроводов давлением 5,4 МПа с температурой эксплуатации до — 60°С.
ТУ 1380-219-0147016-02 530

630

720

820

1 020

7,0 — 24,0

7,0 — 24,0

7,3 — 24,0

8,0 — 24,0

8,8 — 24,0

Класс прочности К52 Трубы стальные электросварные прямошовные нефтегазопроводные повышенной надежности при эксплуатации для месторождений ТПП «КОГАЛЫМНЕФТЕГАЗ».
ГОСТ Р 52079-2003 508

530

610

630

711

720

762

813

820

1 016

1 020

1 067

7,0 — 24,0

7,0 — 24,0

7,0 — 24,0

7,0 — 24,0

8,0 — 30,0

8,0 — 30,0

8,0 — 30,0

8,0 — 30,0

8,0 — 30,0

9,0 — 32,0

9,0 — 32,0

9,0 — 32,0

Класс прочности

К34-К60

Для строительства и ремонта магистральных газопроводов, нефтепроводов и нефтепродуктопроводов, транспортирующих некоррозионноактивные продукты (природный газ, нефть и нефтепродукты при избыточном рабочем давлении до 9,8 МПа и температуре эксплуатации от +50°С до — 60°С.
ТУ 14-ЗР-70-2003 530

630

720

820

1 020

7,0 — 16,0

7,0 — 16,0

8,0 — 16,0

8,0 — 16,0

9,0 — 16,0

Ст3сп5 (К38), 20 (К42), 17Г1С, 17Г1С — У (К52) Для строительства и ремонта трубопроводов тепловых сетей.
ТУ 1383-011-48124013-2003 530

630

720

820

1 020

7,0 — 16,0

7,0 — 16,0

7,0 — 16,0

8,0 — 16,0

10,0 — 16,0

Класс прочности К52

Сталь 09ГСФ

Для сооружения газопроводов, нефтепроводов технологических и промысловых трубопроводов на рабочее давление до 7,4 МПа транспортирующих нефть и нефтепродукты, содержащих сероводород до 6 об.% водоводов. А также предназначенные для нанесения наружного и внутреннего антикоррозионного покрытия.
ТУ 1303-09-593377520-2003 530

630

720

820

1 020

7,0 — 16,0

7,0 — 16,0

8,0 — 16,0

8,0 — 16,0

10,0 — 16,0

Класс прочности К52

Сталь 09ГСФ

Strength class К52

Steel 09ГСФ

Для сооружения газопроводов, нефтепроводов, технологических и промысловых трубопроводов, с температурой эксплуатации до -60°С на рабочее давление до 7,4 МПа, транспортирующих нефть и нефтепродукты. Содержащих сероводород до 6 об.% водоводов, а также предназначенные для нанесения наружного и внутреннего антикоррозионного покрытия.
ТУ 1381-007-05757848-2005 530

630

720

820

1020

1220

7,0 — 31,0

8,0 — 32,0

8,0 — 32,0

8,0 — 32,0

10,0 — 32,0

10,0 — 32,0

Класс прочности

К42-К60

Для строительства, ремонта и реконструкции линейной части, переходов и наземных объектов магистральных нефтепроводов и нефтепродуктопроводов на рабочее давление до 9,8 Мпа.
ТУ 1303-006.2-593377520-2003 530

630

720

820

1020

1220

7,0 — 24,0

8,0 — 24,0

8,0 — 25,0

8,0 — 25,0

10,0 — 25,0

10,0 — 16,0

Класс прочности

К48-К56

Сталь 20Ф, 09ГСФ, 13ХФА, 08ХМФЧА, 15ХМФА

Для сооружения промысловых трубопроводов, транспортирующих нефть, нефтепродукты, пресную и подтоварную воду на рабочем давлении до 7,4 МПа, повышенной эксплуатационной надежности, коррозионностойкие и хладостойкие.
ТУ 14-1-5491-2004 530

630

720

820

1020

7,0 — 24,0

7,0 — 24,0

8,0 — 25,0

8,0 — 25,0

10,0 — 25,0

20 — КСХ Для сооружения нефтесборных сетей (транспортирующих коррозионно-активные газ, нефть и пластовые воды), эксплуатируемых как в обычных климатических условиях, так и в регионах Сибири и Крайнего Севера.
ТУ 1381-012-05757848-2005 530

630

720

820

1020

1220

1420

,0 — 31,0

8,0 — 32,0

8,0 — 32,0

8,0 — 32,0

10,0 — 32,0

12,0 — 32,0

14,0 — 32,0

Класс прочности

К52-К60, Х56-Х70

Для сооружения магистральных трубопроводов на рабочее давление до 9,8 МПа для транспортировки некоррозионноактивного газа
ТУ 1381-013-05757848-2005 530-1220 11,0 — 30,0 Класс прочности

К48-К52

Для строительства и ремонта газопроводов, транспортирующих природный газ, содержащий сероводород.
ТУ 1381-014-05757848-2005 530

630

720

820

1020

1220

1420

7,0 — 31,0

8,0 — 32,0

8,0 — 32,0

8,0 — 32,0

10,0 — 32,0

12,0 — 32,0

14,0 — 32,0

Углеродистая и низколегированная сталь Для трубопроводов пара и горячей воды с давлением не более 2,5 МПа и температурой не более 300°С для стали марки Ст3сп, не более 350°С для стали марок 20, 09Г2С и не более 425°С для стали марок 17Г1С и 17Г1С-У.
ТУ 1381-018-05757848-2005 1067-1220 11,0 — 32,0 Класс прочности

К56, К60

Для строительства, ремонта и реконструкции линейной части, переходов и наземных объектов магистрального нефтепровода «Восточная Сибирь – Тихий Океан» на участках с рабочим давление 9,8 – 14,0 Мпа с сейсмичностью до 8 баллов включительно и на участках с рабочим давлением до 14,0 МПа включительно и сейсмичностью более 8 балов.
ТУ 1381-020-05757848-2005 1420 15,0 — 48,0 Класс прочности

К52-К60

Для изготовления защитных футляров (кожухов) магистральных нефтепроводов.
ГОСТ 20295-85 530-820 7,0-12,0 Класс прочности

К38-К52

Для сооружения магистральных газонефтепроводов, нефтепродуктопроводов, технологических и промысловых трубопроводов.
ГОСТ 10704-91 ГОСТ 10706-76 530-1020 7,0-32,0 Углеродистая и низколегированная сталь Для трубопроводов и конструкций разного назначения.
ТУ 14-ЗР-01-93 530 7,1-16,0 Класс прочности

К54, К60

Для сооружения магистральных газопроводов нефтепроводов и нефтепродуктопроводов с рабочим давлением 7,4 МПа.
API Spec 5L(PSL 1, PSL 2) 508 (20″) — 1422 (56″) 7,1 — 31,8 по согласованию с заказчиком до 50,0 мм Сталь классов прочности Х42-Х80 Для строительства трубопроводов для транспортировки газа, воды и нефти как в нефтяной, так и в газовой промышленности.
ISO 3183(ч.1, 2 и 3) 508 (20″) — 1422 (56″) 7,1 — 31,8 по согласованию с заказчиком до 50,0 мм Сталь классов прочности Х42-Х80 Для трубопроводов, транспортирующих нефть и газ.

kngc.ru

Справочные данные по деталям машин

Трубы стальные сварные для магистральных газонефтепроводов

Стальные сварные прямошовные и спиральношовные трубы диаметром 159...820мм и толщиной стенки 3...12мм применяют для сооружения магистральных газонефтепроводов, технологических и промысловых трубопроводов.

1. Основные параметры и размеры.

1.1. Трубы изготовляют трех типов: 1 - пря­мошовные диаметром 159...426мм, контакт­ной сваркой токами высокой частоты; 2 - спиральношовные диаметром 159...820мм, элек­тродуговой сваркой; 3 - прямошовные диамет­ром 530...820мм, электродуговой сваркой.

1.2. В зависимости от механических свойств трубы изготовляют классов прочно­сти: К34, К38, К42, К50, К52, К55, К60.

Обозначение классов прочности двумя цифрами 34; 38...60 соответствует значению временного сопротивления в кгс/мм2.

1.3. Размеры труб должны соответствовать приведенным в табл. 26.

Трубы изготовляют длиной от 10,6 до 11,6м.

26. Сортамент труб по ГОСТ 20295-85

Диаметр наружный, мм

Толщина стенки, мм

159, 168

3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0

219

3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0; 7,0; 7,5; 8,0

245, 273, 325

4,0; 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0

377

4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0

426

5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 10,0

530,630, 720, 820

5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 10,0; 11,0;12,0

1.4. Предельные отклонения по толщине стенки труб должны соответствовать допускам на толщину металла, предусмотренным ГОСТ 19903-74 для максимальной ширины листовой и рулонной стали.

2. Технические требования.

2.1. Трубы изготовляют из горячекатаной или термически обработанной спокойной и полуспокойной углеродистой стали по ГОСТ 380-94 и ГОСТ 1050-88 с ограничением массовой доли угле­рода не более 0,24% и низколегированной ста­ли в соответствии с требованиями табл. 27.

2.2. Марка стали выбирается предприятием-изготовителем труб с учетом требований по нормам механических свойств и ограничений по предельному содержанию элементов для углеродистой стали в соответствии с ГОСТ 380-94 и ГОСТ 1050-88, низколегированной стали - ГОСТ 19282-73.

2.3. Эквивалент по углероду каждой плав­ки низколегированных марок стали не должен превышать 0,46%.

2.4. Трубы изготовляют термически обра­ботанными (по всему объему или по сварному соединению) и без термической обработки в соответствии с табл. 28.

27. Выбор стали для труб в зависимости от класса прочности

Тип трубы

Углеродистая сталь

Низколегированная сталь

Класс прочности

К34

К38

К42

К50

К52

К55

К60

1

+

-

+

-

-

-

-

2

+

-

+

-

-

-

-

Диаметром от 159 до 377мм

+

+

+

-

-

-

-

Диаметром от 530 до 820мм

-

-

-

+

+

+

+

3

-

-

-

+

+

-

-

Примечания:

1. Трубы класса прочности К60 изготовляют только термически упрочненными.

2. Знаки «+» и «-» означают изготовление и неизготовление труб.

28. Нормы термической обработки труб

Тип трубы

Термообработанные

Нетермообработанные

по всему объему

по сварному соединению

1

+

+

-

2

+

+

+

Диаметром от 159 до377мм

-

-

+

Диаметром от 530 до 820мм

+

+

+

3

+

-

+

Примечания:

1. Трубы типа 3 экспандированные термической обработке не подвергаются.

2. Знаки « + » и «-» означают изготовление и неизготовление труб.

2.5. Механические свойства основного метал­ла труб в зависимости от класса прочности долж­ны соответствовать приведенным в табл. 29.

2.6. Трубы диаметром 219мм и более с толщиной стенки 6мм и более должны вы­держивать испытание на ударный изгиб.

Ударная вязкость основного металла труб должна быть не менее норм, приведенных в табл. 30.

29. Механические свойства основного металла труб

Класс прочности

Временное сопротивление разрыву, σв, Н/мм2

Предел текучести от, Н/мм2

Относительное удлинение δ5, %

не менее

К34

333

206

24

К38

372

235

22

К42

412

245

21

К50

485

343

20

К52

510

353

20

К55

539

372

20

К60

588

412

16

Примечание. Для труб типов 2 и 3 классов прочности от К50 до К55 вкл. верхний предел вре­менного сопротивления не должен превышать минимального значения более чем на 118Н/мм2, для труб типа 2 класса прочности К60 - более чем на 147Н/мм2.

30. Нормы ударной вязкости основного металла труб

Наименование труб

Ударная вязкость, Дж/см2, не менее

KCU

KCV

при температуре испытания, °С

-40

-60

-5

-10

Трубы диаметром 219... 426мм

29,4

-

-

-

Нетермообработанные трубы диаметром 530... 820мм

29,4

-

-

-

Термически упрочненные трубы типа 2 диаметром 530...820мм

39,2

39,2

-

-

Трубы типа 2 класса прочности К60 диаметром 530... 820мм

39,2

39,2

29,4

29,4

2.7. Временное сопротивление разрыву продольных и спиральных сварных соедине­ний должно быть не менее норм, приведенных в табл. 29.

2.8. Ударная вязкость продольных и спи­ральных сварных соединений труб диаметром 530...820мм должна быть не менее:

19,6Дж/см2 - при температуре испытания минус 40°С для труб типа 3;

29,4Дж/см2 - при температуре испытания минус 40°С и минус 60°С для труб типа 2.

2.9. Трубы должны выдерживать испыта­тельное гидравлическое давление, определяе­мое по ГОСТ 3845-75 с учетом осевого подпо­ра, при этом допускаемое напряжение принимается равным 0,95 от нормативного значения предела текучести металла, указанного в табл. 29.

Примеры условных обозначений

Труба типа 3, диаметром 530мм, толщиной стенки 8мм, класса прочности К52, без термооб­работки:

Труба тип 3-530 × 8-К52 ГОСТ 20295-85

Труба типа 2, диаметром 820мм, толщи­ной стенки 12мм, класса прочности К60, с термическим упрочнением:

Труба тип 2-У 820 × 12-К60 ГОСТ 20295-85

Труба типа 1, диаметром 325мм, толщи­ной стенки 7мм, класса прочности К38, с объ­емной термообработкой:

Труба тип 1-Т325 × 7-К38 ГОСТ 20295-85

То же, с локальной термообработкой шва:

Труба тип 1-ЛТ325 × 7-К38 ГОСТ 20295-85

email: [email protected]

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

Теоретическая механика   Сопротивление материалов

Прикладная механика  Строительная механика  Теория машин и механизмов

www.detalmach.ru

ГОСТ 20295-85* Трубы стальные сварные для магистральных газонефтепроводов. Технические условия

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА СССР

ТРУБЫ СТАЛЬНЫЕ СВАРНЫЕ ДЛЯ МАГИСТРАЛЬНЫХ ГАЗОНЕФТЕПРОВОДОВ

Технические условия

ГОСТ 20295-85*

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТРУБЫ СТАЛЬНЫЕ СВАРНЫЕ ДЛЯ МАГИСТРАЛЬНЫХ ГАЗОНЕФТЕПРОВОДОВ

Технические условия

Steel welded pipes for main gas-and-oil pipelines. Specifications

ГОСТ 20295-85*

Взамен ГОСТ 20295-74

Постановлением Государственного комитета СССР по стандартам от 25 ноября 1985 г. № 3693 дата введения установлена

01.01.87

Ограничение срока действия снято Постановлением Госстандарта от 14.08.91 № 1353

Настоящий стандарт распространяется на стальные сварные прямошовные и спиральношовные трубы диаметром 114-1020 мм, применяемые для сооружения магистральных газонефтепроводов, нефтепродуктопроводов, технологических и промысловых трубопроводов.

(Измененная редакция. Изм. № 1)

1. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

1.1. Трубы изготовляют трех типов:

1 - прямошовные диаметром 114-530 мм, изготовленные контактной сваркой токами высокой частоты;

2 - спиральношовные диаметром 159-820 мм, изготовленные электродуговой сваркой;

3 - прямошовные диаметром 530-1020 мм, изготовленные электродуговой сваркой.

(Измененная редакция. Изм. № 1)

1.2. В зависимости от механических свойств трубы изготовляют классов прочности: К 34, К 38, К 42, К 50, К 52, К 55, К 60.

1.3. Размеры труб должны соответствовать приведенным в табл. 1.

1.4. Трубы изготавливают длиной от 10,6 до 12,2 м включ.

По согласованию изготовителя с потребителем допускается поставка труб длиной до 13,7 м.

Для труб типов 1, 2 и экспандированных типа 3 допускается изготавливать до 10 % труб (по массе) длиной не менее 8,0 м

(Измененная редакция. Изм. № 1)

Таблица 1

Номинальный наружный диаметр труб, мм

Теоретическая масса 1 м трубы, кг, при номинальной толщине стенки, мм

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5

8,0

8,5

9,0

10

11

114

8,21

9,54

10,85

12,15

13,44

14,72

15,98

17,23

18,47

19,70

20,91

22,11

23,30

-

-

140

10,14

11,78

13,42

15,04

16,65

18,24

19,83

21,40

22,96

24,51

26,04

27,56

29,07

32,06

34,99

146

10,58

12,30

14,01

15,70

17,39

19,06

20,71

22,36

23,99

25,62

27,22

28,82

30,41

33,54

36,62

159

11,54

13,42

15,29

17,15

18,99

20,82

22,64

24,44

26,24

28,02

29,79

31,55

33,29

36,74

40,15

168

12,21

14,20

16,18

18,15

20,10

22,04

23,97

25,89

27,79

29,68

31,57

33,43

35,29

38,96

42,59

178

12,95

15,06

17,16

19,25

21,33

23,40

25,45

27,49

29,52

31,53

33,54

35,53

37,51

41,43

45,30

219

15,98

18,60

21,21

23,80

26,39

28,96

31,52

34,06

36,60

39,12

41,63

44,12

46,61

51,54

56,42

245

-

-

23,77

26,69

29,59

32,49

35,36

38,23

41,09

43,93

46,76

49,57

52,38

57,95

63,47

273

-

-

26,54

29,80

33,05

36,28

39,51

42,72

45,92

49,11

52,28

55,44

58,60

64,86

71,07

325

-

-

31,67

35,57

39,46

43,34

47,20

51,05

54,90

58,73

62,54

66,35

70,14

77,68

85,18

377

-

-

-

41,34

45,87

50,39

54,90

59,39

63,87

68,34

72,80

77,25

81,68

90,51

99,28

426

-

-

-

-

51,91

57,04

62,15

67,25

72,33

77,41

82,47

87,52

92,56

102,59

112,58

530

-

-

-

-

64,74

71,14

77,54

83,92

90,29

90,64

102,99

109,32

115,64

128,24

140,79

630

-

-

-

-

77,07

84,71

92,33

99,95

107,55

115,14

122,72

130,28

137,83

152,90

167,92

720

-

-

-

-

88,17

96,91

105,65

114,37

123,09

131,79

140,47

149,15

157,81

175,10

192,34

820

-

-

-

-

100,50

110,48

120,45

130,40

140,35

150,28

160,20

170,11

180,00

199,76

219,46

1020

-

-

-

-

-

-

-

-

-

-

-

-

224,39

249,08

273,72

Продолжение табл. 1

Номинальный наружный диаметр труб, мм

Теоретическая масса 1 м трубы, кг, при номинальной толщине стенки, мм

12,0

13,0

14,0

15,0

16,0

17,0

18,0

19,0

20,0

21,0

22,0

23,0

24,0

25,0

114

-

-

-

-

-

-

-

-

-

-

-

-

-

-

140

-

-

-

-

-

-

-

-

-

-

-

-

-

-

146

-

-

-

-

-

-

-

-

-

-

-

-

-

-

159

-

-

-

-

-

-

-

-

-

-

-

-

-

-

168

-

-

-

-

-

-

-

-

-

-

-

-

-

-

178

-

-

-

-

-

-

-

-

-

-

-

-

-

-

219

-

-

-

-

-

-

-

-

-

-

-

-

-

-

245

-

-

-

-

-

-

-

-

-

-

-

-

-

-

273

-

-

-

-

-

-

-

-

-

-

-

-

-

-

325

-

-

-

-

-

-

-

-

-

-

-

-

-

-

377

-

-

-

-

-

-

-

-

-

-

-

-

-

-

426

-

-

-

-

-

-

-

-

-

-

-

-

-

-

530

153,30

165,75

178,15

190,50

202,82

215,07

227,28

239,44

251,55

263,61

-

-

-

-

630

182,89

197,81

212,68

227,49

242,27

257,00

271,67

286,30

300,87

315,38

-

-

-

-

720

209,52

226,66

243,75

260,78

277,79

294,73

311,62

328,47

345,26

362,01

378,70

395,35

411,95

-

820

239,12

258,72

278,28

297,77

317,25

336,65

356,01

375,32

394,58

413,77

432,93

452,04

471,10

-

1020

298,31

322,84

347,33

371,75

396,16

420,50

444,79

469,04

493,23

517,37

541,47

565,51

589,51

613,45

Примечания:

1. Теоретическая масса труб определена по номинальным размерам (без учета усиления шва) при плотности 7,85 г/см3.

2. При изготовлении труб типа 2 и двухшовных труб типа 3 теоретическая масса увеличивается за счет усиления шва на 1,5 %, одношовных труб типа 3 - на 1 %.

3. Трубы типа 1 диаметром 530 мм изготавливают с толщиной стенки не более 11 мм.

(Измененная редакция. Изм. № 1)

1.5. Предельные отклонения по наружному диаметру корпуса труб должны соответствовать табл.2.

По требованию потребителя предельные отклонения по наружному диаметру корпуса труб типа 2 диаметром 159-377 мм должны соответствовать приведенным в табл. 3.

Таблица 2

мм

Наружный диаметр

Предельное отклонение

114 и 140

±1,1

146

±1,2

159 и 168

±1,5

Св. 168 до 325 включ.

±2,0

« 325 «   426   «

±2,2

« 426 «   630   «

±3,0

« 630 « 1020   «

±4,0

(Измененная редакция. Изм. № 1)

Таблица 3

мм

Наружный диаметр

Предельное отклонение

159 и 168

±1,2

Св. 168 до 325 включ.

±1,5

377

±2,0

1.6. Предельные отклонения по наружному диаметру торцов труб типа 1 должны соответствовать табл. 2, типа 2 диаметром 159 - 377 мм - табл. 2 и 3.

1.7. Предельные отклонения по наружному диаметру торцов труб типа 2 диаметром 530 мм и более и типа 3 (экспандированных) не должны превышать ±2,0 мм для обычной точности изготовления и ±1,6 мм для повышенной точности изготовления.

(Измененная редакция. Изм. № 1)

1.8. Предельные отклонения по толщине стенки труб должны соответствовать допускам на толщину металла, предусмотренным ГОСТ 19903-74 для максимальной ширины листовой и рулонной стали.

1.9. Овальность торцов труб не должна выводить их размеры за предельные отклонения, приведенные в табл. 2 - для труб типа 1, и в табл. 2 и 3 - для труб типа 2 диаметром 159-377 мм.

Овальность торцов труб типа 2 диаметром 530 мм и более и труб типа 3 не должна превышать 1 % от номинального наружного диаметра.

1.10. Кривизна труб типа 1, исключая участок поперечного шва, не должна превышать 1,5 мм на 1 м длины, по требованию потребителя - 1 мм на 1 м длины.

Общая кривизна труб всех типов не должна превышать 0,2 % от длины трубы. По требованию потребителя общая кривизна труб типа 2 диаметром 530 мм и более не должна превышать 0,1 %, остальных труб - 0,15 % от длины трубы.

1.11. Высота усиления всех наружных швов труб типов 2 и 3 должна быть:

0,5-2,5 мм - для труб с толщиной стенки менее 10 мм,

0,5-3,0 мм - для труб с толщиной стенки 10 мм и более.

Высота усиления внутренних швов должна быть не менее 0,5 мм. На внутреннем шве допускается седловина или отдельные углубления до уровня основного металла.

На концах экспандированных труб типа 3, а также термически упрочненных труб типа 2 на длине не менее 150 мм усиление внутреннего шва должно быть снято до высоты не более 0,5 мм (без учета смещения кромок). При этом допускается изготовление до 7 % труб от партии (от которых отобраны образцы для механических испытаний) с неснятым усилением внутренних швов.

(Измененная редакция. Изм. № 1)

1.12. Наружный грат сварного шва на трубах типа 1 должен быть удален. Внутренний грат сварного шва удаляют по согласованию потребителя с изготовителем. В месте снятия грата допускается утонение стенки трубы, не выводящее толщину за пределы минусового допуска. Высота остатка грата не должна превышать величины, определяемой по формуле

где Н - максимально допустимая высота остатка грата, мм; S  - номинальная толщина стенки, мм.

(Измененная редакция. Изм. № 1)

1.13. В сварном соединении труб типа 2 допускается относительное смещение кромок по высоте на величину до 15 % от номинальной толщины стенки, для труб типов 1 и 3 - до 10 %.

По требованию потребителя для труб типа 2 диаметром 530 мм и более отклонение от теоретической окружности в зоне спирального шва по торцам трубы на дуге окружности длиной не менее 100 мм не должно превышать 1,5 мм.

1.14 Концы труб должны быть обрезаны под прямым углом. Предельные отклонения от прямого угла (косина реза) должны соответствовать табл. 4.

1.15. Концы труб с толщиной стенки 5 мм и более должны иметь фаску под углом 25-30°. При этом должно быть оставлено торцевое кольцо (притупление) шириной 1,0-3,0 мм.

Таблица 4

мм

Наружный диаметр

Предельное отклонение по косине реза

От 114 до 325 включ.

1,0

Св. 325 «   426    «

1,5

« 426 « 1020   «

2,0

Допускается увеличение торцевого кольца на расстоянии до 40 мм по обе стороны шва на величину усиления шва или высоту внутреннего грата.

По требованию потребителя допускается изготовлять трубы с фасками под другим углом.

Величина остатка заусенца не должна превышать 0,5 мм.

Примеры условных обозначений

Труба типа 3, диаметром 530 мм, толщиной стенки 8 мм, класса прочности К 52, без термообработки:

Труба тип 3-530´8 - К 52 ГОСТ 20295-85

Труба типа 2, диаметром 820 мм, толщиной стенки 12 мм, класса прочности К 60, с термическим упрочнением:

Труба тип 2-У 820´12 - К 60 ГОСТ 20295-85

Труба типа 1, диаметром 325 мм, толщиной стенки 7 мм, класса прочности К 38, с объемной термообработкой:

Труба тип 1-Т 325´7 - К 38 ГОСТ 20295-85

То же, с локальной термообработкой шва:

Труба тип 1-ЛТ 325´7 - К 38 ГОСТ 20295-85

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Трубы изготовляют в соответствии с требованиями настоящего стандарта по техническим регламентам, утвержденным в установленном порядке.

Трубы должны изготовляться из горячекатаной или термически обработанной спокойной и полуспокойной углеродистой стали по ГОСТ 380-2005и ГОСТ 1050-88 с ограничением массовой доли углерода не более 0,24 % и низколегированной стали в соответствии с требованиями табл. 5.

(Измененная редакция. Изм. № 1)

2.2. Марка стали выбирается предприятием - изготовителем труб с учетом требований по нормам механических свойств и ограничений по предельному содержанию элементов для углеродистой стали в соответствии с ГОСТ 380-2005и ГОСТ 1050-88, низколегированной стали - ГОСТ 19281-89.

(Измененная редакция. Изм. № 1)

2.3. Эквивалент по углероду каждой плавки низколегированных марок стали не должен превышать 0,46 %.

Таблица 5

Тип трубы

Углеродистая сталь

Низколегированная сталь

класса прочности

К 34

К 38

К 42

К 50

К 52

К 55

К 60

1

+

+

+

+

+

+

+

2

диаметром от 159 до 377 мм

+

+

+

-

-

-

-

«         «   530 « 820 «

-

-

-

+

+

+

+

3

-

+

+

+

+

+

+

Примечания:

1. Трубы типа 2 класса прочности К 60 изготавливают только термически упрочненными.

2. Знак «+» означает изготовление труб, знак «-» - не изготовление труб

(Измененная редакция. Изм. № 1)

2.4. Трубы изготовляют термически обработанными (по всему объему или по сварному соединению) и без термической обработки в соответствии с табл. 6.

Таблица 6

Тип трубы

Термообработанные

Нетермообработанные

по всему объему

по сварному соединению

1

+

+

-

2

+

+

-

Диаметром от 159 до 377 мм

-

-

+

Диаметром » 530 » 820 мм

+

+

+

3

+

-

+

Примечания:

1. Трубы типа 3 экспандированные термической обработке не подвергаются.

2. Знаки «+» и «-» означают изготовление и не изготовление труб.

(Измененная редакция. Изм. № 1)

2.5. Механические свойства основного металла труб в зависимости от класса прочности должны соответствовать приведенным в табл. 7.

2.6. Трубы диаметром 219 мм и более с толщиной стенки 6 мм и более должны выдерживать испытание на ударный изгиб.

2.6.1. Ударная вязкость основного металла труб должна быть не менее норм, приведенных в табл.8.

2.6.2. Для труб типа 2 диаметром 820 мм класса прочности К 60 и труб типа 3 диаметром 720 - 1020 мм доля вязкой составляющей в изломе образцов основного металла труб при температуре испытания минус 5 °С должна быть не менее 50 %.

(Измененная редакция. Изм. № 1)

Таблица 7

Класс прочности

Временное сопротивление разрыву sв, Н/мм2 (кгс/мм2)

Предел текучести sr, Н/мм2 (кгс/мм2)

Относительное удлинение d5, %

не менее

К 34

333 (34)

206 (21)

24

К 38

372 (38)

235 (24)

22

К 42

412 (42)

245 (25)

21

К 50

485 (50)

343 (35)

20

К 52

510 (52)

353 (36)

20

К 55

539 (55)

372 (38)

20

К 60

588 (60)

412 (42)

16

Примечание. Для труб всех типов классов прочности К 50, К 52 и К 55 максимальное значение временного сопротивления разрыву (

www.vashdom.ru

Расчет трубы на прочность – 2 простых примера расчета трубных конструкций

Ulysse

19182 0 3

Каркас дома в этом примере изготовлен из профильной трубы

Обычно, когда трубы используются в быту (в качестве каркаса или опорных частей какой-нибудь конструкции), то внимание вопросам устойчивости и прочности не уделяется. Нам заведомо известно, что нагрузка будет небольшой и расчет на прочность не понадобится. Но знание методики оценки прочности и устойчивости точно не будет лишним, все-таки лучше твердо быть уверенным в надежности постройки, чем уповать на счастливый случай.

В каких случаях нужен расчет на прочность и устойчивость

Расчет прочности и устойчивости чаще всего нужен строительным организациям, ведь им нужно обосновать принятое решение, а делать сильный запас нельзя ввиду удорожания конечной конструкции. Сложные конструкции, конечно, вручную никто не рассчитывает, можно пользоваться тем же SCAD или ЛИРА САПР для расчета, но простенькие конструкции можно рассчитать и своими руками.

Вместо ручного расчета можно воспользоваться и разными онлайн-калькуляторами, в них, как правило, представлено несколько простейших расчетных схем, дается возможность выбора профиля (не только труба, но и двутавры, швеллеры). Задав нагрузку и указав геометрические характеристики, человек получает максимальные прогибы и значения поперечной силы и изгибающего момента в опасном сечении.

Пример работы простенького калькулятора для расчета

В принципе, если вы сооружаете простенький навес над крыльцом или делаете перильное ограждение лестницы у себя дома из профильной трубы, то можно обойтись и вовсе без расчета. Но лучше все же потратить пару минут и прикинуть – достаточной ли будет несущая способность вашего каркаса для навеса или столбов для забора.

Если в точности следовать правилам расчета, то согласно СП 20.13330.2012 нужно сперва определить такие нагрузки как:

  • постоянная – имеется ввиду собственный вес конструкции и прочие типы нагрузок, которые будут оказывать воздействие на протяжении всего срока службы;
  • временная длительная – речь идет о продолжительном воздействии, но со временем это нагрузка может исчезнуть. Например, вес оборудования, мебели;
  • кратковременная – как пример можно привести вес снежного покрова на крыше/козырьке над крыльцом, ветровое воздействие и т. д.;
  • особые – те, которые предсказать невозможно, это может быть и землетрясение, и стойки из трубы машиной.

Согласно тому же нормативу расчет трубопроводов на прочность и устойчивость выполняется с учетом самого неблагоприятного сочетания нагрузок из всех возможных. При этом определяются такие параметры трубопровода как толщина стенки самой трубы и переходников, тройников, заглушек. Расчет отличается в зависимости от того, проходит трубопровод под или над землей.

В быту усложнять себе жизнь точно не стоит. Если вы планируете простенькую постройку (из труб будет возведен каркас для забора или навеса, беседки), то вручную считать несущую способность нет смысла, нагрузка все равно будет мизерная и запас прочности будет достаточный. Даже трубы 40х50 мм с головой хватит для устройства навеса или стоек для будущего еврозабора.

На фото – довольно простая конструкция. Тут можно обойтись и без расчета

Для оценки несущей способности можно воспользоваться готовыми таблицами, в которых в зависимости от длины пролета указана максимальная нагрузка, которую труба может выдержать. При этом уже учтен собственный вес трубопровода, а нагрузка представлена в виде сосредоточенной силы, приложенной по центру пролета.

Например, труба 40х40 с толщиной стенки 2 мм при пролете 1 м способна выдержать нагрузку в 709 кг, но при увеличении пролета до 6 м максимально допустимая нагрузка сокращается до 5 кг.

Допустимая нагрузка в зависимости от длины пролета

Отсюда и первое важное замечание – не делайте пролеты слишком большими, это сокращает допустимую нагрузку на него. Если нужно перекрыть большое расстояние лучше установите пару стоек, получите увеличение допустимой нагрузки на балку.

Классификация и расчет простейших конструкций

В принципе, из труб можно создать конструкцию любой сложности и конфигурации, но в быту чаще всего используются типовые схемы. Например, схема балки, с жестким защемлением с одного конца может использоваться как модель опоры будущего столба забора или опоры под навес. Так что рассмотрев расчет 4-5 типовых схем можно считать, что большинство задач в частном строительстве решить удастся.

Область применения трубы в зависимости от класса

Изучая ассортимент проката, вы можете столкнуться с такими терминами как группа прочности труб, класс прочности, класс качества и т. д. Все эти показатели позволяют сразу узнать назначение изделия и ряд его характеристики.

Важно! Все, о чем будет идти речь далее, касается металлических труб. В случае с ПВХ, полипропиленовыми трубами тоже, конечно, можно определить прочность, устойчивость, но учитывая сравнительно мягкие условия их работы такую классификацию приводить нет смысла.

Так как металлические трубы работают в напорном режиме, периодически могут возникать гидравлические удары, особое значение приобретает постоянство размеров и соответствие эксплуатационным нагрузкам.

Например, по группам качества можно выделить 2 типа трубопровода:

  • класс А – контролируются механические и геометрические показатели;
  • класс D – учитывается и стойкость к гидравлическим ударам.

Возможно и разделение трубного проката на классы в зависимости от назначения, в этом случае:

  • 1 класс – говорит о том, что прокат может использоваться для организации водо-и газоснабжения;
  • 2 класс – указывает на повышенную стойкость к давлению, гидроударам. Такой прокат уже подойдет, например, для строительства магистрали.

Классификация по прочности

Классы прочности труб приводятся в зависимости от того, какое временное сопротивление растяжению показывает металл стенки. По маркировке можно сразу судить о прочности трубопровода, например, обозначение К64 означает следующее: буква К говорит о том, что речь идет о классе прочности, число показывает временное сопротивление растяжению (единицы измерения кг∙с/мм2).

Минимальный показатель прочности составляет 34 кг∙с/мм2, а максимальный — 65 кг∙с/мм2. При этом класс трубы по прочности подбирается исходя не только из максимальной нагрузки на металл, условия эксплуатации также учитываются.

Существует несколько нормативов, описывающих требования к трубам по прочности, например, для проката, который используется при строительстве газонефтепроводов актуален ГОСТ 20295-85.

Примеры маркировки труб

Помимо классификации по прочности вводится и разделение в зависимости от типа труб:

  • тип 1 – прямошовные (используется контактная сварка высокочастотным током), диаметр составляет до 426 мм;
  • тип 2 – спиральношовные;
  • тип 3 – прямошовные.

Также отличаться трубы могут и по составу стали, высокопрочный прокат выпускается из низколегированной стали. Углеродистая сталь идет на производство проката с классом прочности К34 – К42.

Содержание углерода

Что касается физических характеристик, то для класса прочности К34 сопротивление на разрыв равно 33,3 кг∙с/мм2, предел текучести как минимум 20,6 кг∙с/мм2, а относительное удлинение не более 24%. Для более прочной трубы К60 эти показатели уже составляют 58,8 кг∙с/мм2, 41,2 кг∙с/мм2 и 16% соответственно.

Характеристики труб по классам прочности

Расчет типовых схем

В частном строительстве сложные конструкции из труб не используются. Их просто слишком сложно создавать, да и нет нужды в них по большому счету. Так что при строительстве с чем-то сложнее треугольной фермы (под стропильную систему) вы вряд ли столкнетесь.

В любом случае все расчеты можно выполнить своими руками, если вы еще не забыли основы сопромата и строительной механики.

Расчет консоли

Консоль – обычная балка, жестко закрепленная с одной стороны. Как пример можно привести столбик под забор или кусок трубы, который вы прикрепили к стене дома, чтобы сделать навес над крыльцом.

В принципе, нагрузка может быть какой-угодно, это может быть:

  • одиночная сила, приложенная либо к краю консоли, либо где-нибудь в пролете;
  • равномерно распределенная по всей длине (либо на отдельном участке балки) нагрузка;
  • нагрузка, интенсивной которой меняется по какому-либо закону;
  • также на консоль могут действовать пары сил, вызывающие изгиб балки.

В быту чаще всего приходится иметь дело именно с нагрузкой балки единичной силой и равномерно распределенной нагрузкой (например, ветровая нагрузка). В случае с равномерно распределенной нагрузкой максимальный изгибающий момент будет наблюдаться непосредственно у жесткой заделки, а его величину можно определить по формуле

M= ql22;

где М – изгибающий момент;

q – интенсивность равномерно распределенной нагрузки;

l – длина балки.

В случае же с сосредоточенной силой, приложенной к консоли, и считать то нечего – для того, чтобы узнать максимальный момент в балке достаточно перемножить величину силы на плечо, т.е. формула примет вид

M= F∙l.

Максимальные моменты при нагрузке консоли сосредоточенной и распределенной нагрузкой

Все эти расчеты нужны для единственной цели – проверить достаточно ли будет прочность балки при эксплуатационных нагрузках, любая инструкция этого требует. При расчете нужно, чтобы полученное значение было ниже справочной величины предела прочности, желательно, чтобы был запас хотя бы 15-20%, все-таки предусмотреть все типы нагрузок сложно.

Для определения максимального напряжения в опасном сечении используется формула вида

σ= MmaxW;

где σ – напряжение в опасном сечении;

Mmax – максимальный изгибающий момент;

W – момент сопротивления сечения, справочная величина, хотя ее и можно рассчитать вручную, но лучше просто подсмотреть ее значение в сортаменте.

Балка на двух опорах

Еще один простейший вариант использования трубы – в качестве легкой и прочной балки. Например, для устройства перекрытий в доме или при строительстве беседки. Вариантов загружений здесь тоже может быть несколько, мы остановимся только на простейших.

Балка загружена сосредоточенной силой по центру

Сосредоточенная сила по центру пролета – самый простой вариант нагружения балки. При этом опасное сечение будет располагаться непосредственно под точкой приложения силы, а определить величину изгибающего момента можно по формуле.

M= F∙l4.

Чуть более сложный вариант – равномерно распределенная нагрузка (например, собственный вес перекрытия). В этом случае максимальный изгибающий момент будет равен

M= ql28.

Балка загружена равномерно распределенной нагрузкой

В случае с балкой на 2 опорах важным становится и ее жесткость, то есть максимальное перемещение под нагрузкой, чтобы условие по жесткости выполнялось нужно, чтобы прогиб не превышал допустимую величину (задается как часть длины пролета балки, например, l/300).

При действии на балку сосредоточенной силы максимальный прогиб будет находиться под точкой приложения силы, то есть по центру.

Расчетная формула имеет вид

f= Fl348EI.

где E – модуль упругости материала;

I – момент инерции.

Модуль упругости – величина справочная, для стали, например, он равен 2∙105 Мпа, а момент инерции указывается в сортаменте для каждого размера трубы, так что вычислять его отдельно не нужно и расчет своими руками выполнить сможет даже гуманитарий.

Сортамент круглых труб

Для равномерно распределенной нагрузки, приложенной по всей длине балки, максимальное перемещение будет наблюдаться по центру. Определить его можно по формуле

f= 5ql4384EI.

Чаще всего если при расчете на прочность все условия выполнились и есть запас хотя бы 10%, то и с жесткостью никаких проблем нет. Но изредка могут быть случаи, когда прочность достаточна, а вот прогиб превышает допустимый. В таком случае просто увеличиваем сечение, то есть берем следующую по сортаменту трубу и повторяем расчет до тех пор, пока условие не выполнится.

Статически неопределимые конструкции

В принципе, с такими схемами работать тоже несложно, но нужны хотя бы минимальные познания в сопромате, строительной механике. Статически неопределимые схемы хороши тем, что позволяют более экономно использовать материал, ну а минус их в том, что расчет усложняется.

Простейшие схемы статически непреодолимых балок

Простейший пример – представьте себе пролет длиной 6 метров, нужно перекрыть его одной балкой. Вариантов решения задачи 2:

  1. просто уложить длинную балку с максимально крупным сечением. Но за счет только собственного веса ее прочностной ресурс будет почти полностью выбран, да и цена такого решения будет немалой;
  2. установить в пролете пару стоек, система станет статически неопределимой, зато допустимая нагрузка на балку возрастет на порядок. В итоге можно взять меньшее сечение и сэкономить на материале без снижения прочности и жесткости.

Заключение

Конечно, перечисленные варианты нагрузок не претендуют на полный перечень всех возможных вариантов загружения. Но для использования в быту этого вполне достаточно, тем более что далеко не все занимаются самостоятельно расчетом своих будущих построек.

Но если вы все же решитесь взять в руки калькулятор и проверить прочность и жесткость уже существующих/только планирующихся конструкций, то предложенные формулы лишними не будут. Главное в этом деле – не экономить на материале, но и не брать слишком большой запас, нужно найти золотую середину, расчет на прочность и жесткость позволяет сделать это.

На видео в этой статье показан пример расчета трубы на изгиб в SolidWorks.

В комментариях оставляйте свои замечания/предложения по поводу расчета трубных конструкций.

27 августа 2016г.

Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора - добавьте комментарий или скажите спасибо!

obustroeno.com


Смотрите также