(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Неподвижная опора для труб теплоснабжения


Опоры трубопроводов неподвижные

  • Вы здесь:
  • Наша продукция
  • Опоры трубопроводов
  • Неподвижные

Неподвижная опора для труб теплоснабжения – это важнейшая составляющая конструкции тепловых сетей любой сложности. Специфика функционирования отопительных систем накладывает колоссальную нагрузку на трубы и предъявляет особые требования к их изоляции. Неподвижные опоры тепловых сетей также должны выдерживать строгие нормы, обеспечивая надежность и бесперебойную эксплуатацию трубопровода. Несоблюдение соответствующих СНиПов и технологий монтажа приводит ко всем известным проблемам, темным пятном лежащим на репутации недобросовестных строительных компаний и служб жилищно-коммунального хозяйства. В первую очередь, речь идет о повсеместном аварийном состоянии систем отопления.

Неподвижная опора для труб теплоснабжения прочно фиксирует не только сам трубопровод, но и его изоляцию, как при надземной, так и при подземной его прокладке. Среди изделий современной серии наибольшей популярностью пользуются следующие типы опор, выполненные по чертежам 4.903-10, Выпуск 4:

- самые простые по конструкции опоры трубопроводов неподвижные (Т.3),

- опора неподвижная для труб лобовая двухупорная (Т.4) и еще более устойчивая двухупорная усиленная (Т.6),

- неподвижная опора теплосети лобовая четырехупорная (Т.5) и четырехупорная усиленная (Т.7),

- привлекательные по цене неподвижные опоры для трубопроводов щитовая (Т.8) и щитовая усиленная (Т.9),

- опора неподвижная боковая (Т.10), рассчитанная на большой диапазон диаметров труб,

- предусмотренная для осевых и боковых нагрузок опора неподвижная хомутовая бескорпусная (Т.11) и имеющая металлический корпус (Т.12),

- опора неподвижная лобовая сальниковых компенсаторов для трубопроводов с большим диаметром (Т.46),

- опора неподвижная бугельная с допустимым диаметром труб от 377 мм до 1420 мм (Т.44).

Перечисленные неподвижные опоры тепловых сетей могут быть применены как для полипропиленовых труб, так и для металлических, с наружным диаметром 25-1420 мм. Изготавливаются все неподвижные опоры из горячекатаных профилей для трубопроводов и имеют вариант, защищенный антиэлектрокоррозийным покрытием.

На нашем сайте каждая неподвижная опора для труб теплоснабжения имеет фото, а выгодная цена и краткое описание с техническими требованиями поможет вам сделать выбор среди множества вариантов изделий. В случае необходимости вы всегда можете обращаться к консультантам торгового дома «Экохимтэк», используя данные из раздела «Контакты».

Заказать

Неподвижные опоры Т.3, для создания которых применяется листовая сталь, образованы сварным корпусом с упорами и хомутом (Т.3) либо только двумя сварными упорами (Т.4 и Т.6), а для исполнений Т.5 и Т.7 – четырьмя сварными упорами. На готовые изделия наносят защитный антикоррозийный слой. Назначение д...

Неподвижные опоры Т.4, для создания которых применяется листовая сталь, образованы сварным корпусом с упорами и хомутом (Т.3) либо только двумя сварными упорами (Т.4 и Т.6), а для исполнений Т.5 и Т.7 – четырьмя сварными упорами. На готовые изделия наносят защитный антикоррозийный слой. Назначение д...

Неподвижные опоры Т.5, для создания которых применяется листовая сталь, образованы сварным корпусом с упорами и хомутом (Т.3) либо только двумя сварными упорами (Т.4 и Т.6), а для исполнений Т.5 и Т.7 – четырьмя сварными упорами. На готовые изделия наносят защитный антикоррозийный слой. Назначение д...

Неподвижные опоры Т.6, для создания которых применяется листовая сталь, образованы сварным корпусом с упорами и хомутом (Т.3) либо только двумя сварными упорами (Т.4 и Т.6), а для исполнений Т.5 и Т.7 – четырьмя сварными упорами. На готовые изделия наносят защитный антикоррозийный слой. Назначение д...

Неподвижные опоры Т.4, для создания которых применяется листовая сталь, образованы сварным корпусом с упорами и хомутом (Т.3) либо только двумя сварными упорами (Т.4 и Т.6), а для исполнений Т.5 и Т.7 – четырьмя сварными упорами. На готовые изделия наносят защитный антикоррозийный слой. Назначение д...

Неподвижные щитовые опоры Т.8, для создания которых применяется листовая сталь, образованы сварным упорным щитом с прочными ребрами жесткости. Назначение данного типа опор – неподвижная опора для технологических трубопроводов с внешним диаметром Ду=108-1420 мм.Конструкция, нормы изготовления и т...

сайт создан на maze-cms

g2s.su

Закрепление трубопроводов в местах установки неподвижных опор

Неподвижные опоры трубопроводов

Назначение неподвижного закрепления трубопроводов в отдельных точках заключается в распределении температурных удлинений между отдельными компенсирующими устройствами и в уравновешивании осевых усилий в трубопроводе.

От правильного размещения неподвижных закреплений по длине трассы трубопровода во многом зависит величина температурных усилий и напряжений в трубах. Уменьшение последних всегда желательно, так как повышает эксплуатационную надежность теплопроводов. Поэтому при проектировании следует уделять большое внимание рациональному распределению неподвижных опор по трассе теплопроводов, а также их расчету на прочность.

Однако в общем случае невозможно рекомендовать какие-либо готовые решения, касающиеся разбивки неподвижных точек на проектируемом трубопроводе, а также выбора геометрических схем и оптимальной длины самокомпенсирующихся участков.

В частных случаях, например в теплопроводах с сальниковыми компенсаторами, практикой проектирования установлены предельные расстояния между компенсаторами и неподвижными точками. Для канальных подземных прокладок могут быть рекомендованы следующие расстояния:

Условный диаметр труб dy в мм

100

150

200

250

300

600

Расстояния в м

80

100

120

130

150

160

В бесканальных теплопроводах предельные расстояния назначаются по расчету.

Неподвижные опоры в зависимости от действующих усилий разделяются на неразгруженные и разгруженные.

Неразгруженные опоры воспринимают и уравновешивают осевые усилия, вызванные гидростатическим давлением теплоносителя. Эти усилия зависят от диаметра труб и могут достигать очень больших величин.

Разгруженные опоры свободны от усилий, вызванных гидростатическим давлением.

Неразгруженные опоры, как правило, характерны для теплопроводов с сальниковыми компенсаторами, разгруженные — для теплопроводов с гибкими (П-образными или др.) компенсаторами, а также для участков теплопроводов с самокомпенсацией.

Конструкции неподвижных опор состоят из двух основных элементов: несущих конструкций (балок, железобетонных плит), на которые передаются усилия от трубопроводов, и собственно опор, при помощи которых осуществляется неподвижное закрепление труб (приварные косынки, хомуты).

Неподвижные опоры имеют следующие конструктивные варианты:

а) разъемные с хомутами на резьбовых соединениях;

б) неразъемные с непосредственной приваркой труб к несущим конструкциям опор;

в) неразъемные с приварными упорами;

г) щитовые из железобетонных плит (для подземных теплопроводов).

Неподвижная опора для труб dy=

300 мм к стенам.

Конструкция типовых разъемных креплений при помощи хомутов дается в СНиП 1-Г.7-62, где использованы нормали МВН—МСЭС 1324—56 и 1326—56; хомуты выполнены из полосовой стали. Однако правильнее их заменить хомутами из стали круглого сечения, а швеллер, к которому крепится трубопровод, расположить полками вниз, как это показано на рисунке.

Неподвижная опора с двойными хомутами для труб dу = 76 — 700 мм

1 — хомуты из круглой стали;

2 — приварные упоры;

3 — опорная конструкция из швеллера

При этом можно более сильно притянуть хомуты к поверхности трубы; следовательно, увеличится сила трения, противодействующая проскальзыванию трубы в осевом направлении.

Основные размеры креплений, приведенных на рисунке, даны в таблице.

Размеры деталей и расчетные осевые усилия для неподвижных закреплений с хомутами

Хомутовое крепление не рекомендуется устанавливать на трубах диаметром более 700 мм. Оно недостаточно надежно даже для разгруженных опор.

На рисунке приведена типовая конструкция (МВН 1316-56 и МВН 1322-56), нашедшая очень широкое применение в тепловых сетях для неподвижного закрепления труб в подземных камерах или в проходных туннелях к металлическим балкам или стойкам. Основные размеры приведены в таблице.

Типовая неподвижная опора для трубопроводов

1 — приварные упоры, усиленные ребрами жесткости;

2 — опорная конструкция из двух швеллеров,

3 — связи из угловой стали.

Размеры деталей и расчетные осевые усилия для неподвижных закреплений типовой конструкции

Типовое закрепление усиленной конструкции для труб большого диаметра по нормали МВН 1316—56 приведено на рисунке, а размеры даны в таблице.

Неподвижная опора типовой конструкции для труб большого диаметра

1 — приварные упоры с двумя ребрами жесткости;

2 — несущая конструкция из швеллеров;

3 — поперечные связи.

Размеры деталей и расчетные осевые усилия для неподвижных опорных креплений усиленной конструкции

Широкое применение в проектировании подземных теплосетей, особенно при бесканальной прокладке (например, в теплосетях Ленинграда), находят опоры щитовой конструкции по нормали МВН 1329-60. Здесь осевое усилие передается приварными фланцами, усиленными ребрами жесткости, на железобетонную плиту. Плиты бетонируются после окончания монтажа трубопроводов и приварки упоров. Размеры опор приведены в таблице.

Неподвижная опора щитовой конструкции

1 — приварные упоры;

2 — приварные фланцы;

3 — зазор между трубой и щитом, заделываемый асбестовым шнуром;

4 — железобетонная плита (щит).

Размеры деталей и расчетные осевые усилия для опор щитовой конструкции

Щитовые опоры нельзя рассматривать как абсолютно неподвижные точки трубопровода. Под действием осевых нагрузок опоры могут перемещаться вследствие деформации окружающего грунта, особенно в первое время после монтажа, когда грунт еще недостаточно уплотнился. Однако это не ухудшает работу трубопровода, если перемещения не достигают слишком большой величины (не более 40—50 мм).

Наблюдается также податливость неподвижных опор металлической конструкции в подземных камерах, где опоры труб расположены на балках или стойках.

Однако чрезмерные перемещения опорных конструкций недопустимы, особенно для трубопроводов с сальниковыми компенсаторами, в которых они могут стать причиной серьезных аварий, так как при достаточно большом сдвиге опор в направлении оси труб может произойти вырывание концов труб из сальников компенсаторов. Неподвижные опоры на трубопроводах с сальниковыми компенсаторами, как правило, должны обладать повышенной жесткостью.

tesrf.ru

Опоры трубопроводов: скользящие, неподвижные

Опоры для труб призваны принять на себя вес магистрали, а также транспортируемого по ней вещества. Они помогают сгладить нагрузки, которые усугубляются из-за непрерывного воздействия внешних факторов, вибраций и т.д.

Неподвижная опора для трубопровода

Являясь конструктивным элементом, опоры для трубопроводов способствуют безопасной эксплуатации системы.

Производство опор трубопроводов

Изготавливаются опорные изделия из стали. При эксплуатации трубопровода в обычных условиях применяется стандартный сортовой прокат. Если магистраль работает в специфических условиях, то выбираются металлические опоры, способные выдерживать нагрузку веществ высокой температуры или воздействия холодной среды, например, в условиях Крайнего Севера.

Производство опорных конструкций трубопроводов включает в себя такие этапы:

  1. Раскрой стальных листов на станках высокой точности.
  2. Раскрой материала на гильотине.
  3. Резка стальных листов при помощи ленточного оборудования.
  4. Сварка элементов.

Для соединения стальных отрезков применяют хомуты. Они производятся на автоматизированных прессах. Благодаря им, удается достичь высокого качества элементов.Применяются металлические опоры для обслуживания:

  • нефтепроводов;
  • газопроводов;
  • для функционирования атомных и тепловых электростанций;
  • для запуска труб ППУ теплоснабжения.

Промышленность выпускает металлические опоры следующих типов:

  1. Подвижные (скользящие, катковые и т.д.).
  2. Неподвижные (хомутовые, приварные, упорные).

Неподвижные опоры для ППУ труб теплоснабжения

Неподвижные изделия для ППУ труб теплоснабжения производятся для установки надежного крепления трубопровода и поддержания его в заданном положении.

Опора для магистрали теплоснабжения

Используются такие опоры для труб в технологических магистралях надземной и подземной прокладки. Неподвижная конструкция призвана компенсировать нагрузку внешней среды, например, температурные колебания, вибрацию, пульсацию и прочее.

Обустраивается неподвижная опора для ППУ трубы теплоснабжения в комбинации с компенсаторами, которые помогают равномерно распределить нагрузку. Особенно в этом нуждаются металлические конструкции, проложенные в северных районах.

Для крепления неподвижная конструкция использует хомуты или сварку. С целью прочно закрепить хомуты, путем сваривания к трубе крепятся упорные планки.

Неподвижные конструкции широко применяются при эксплуатации ППУ труб теплоснабжения. Они являются важной составной частью инженерных сетей в пенополиуретановой изоляции. Опоры для труб ППУ теплоснабжения эксплуатируются согласно ГОСТ 30732-2006.

Неподвижные конструкции для ППУ теплоснабжения могут применяться для обустройства подземной прокладки канального или беcканального типа.

Характеризуются конструкции ППУ теплоснабжения гидроизолированностью, устойчивостью к температурным скачкам и коррозии. Хотя опоры для ППУ труб теплоснабжения выполнены из стальных компонентов, они не нуждаются в дополнительном нанесении электрохимической защиты.

Подвижные опоры для крепления трубопроводов

Подвижные или скользящие конструкции используются для крепления трубопроводных магистралей от 50 до 1620 мм. Они принимают на себя вертикальные нагрузки, к которым относятся вес трубопровода, переносимой среды, атмосферные нагрузки в виде ветра и осадков.

Скользящие стальные опоры под трубопроводы допускают горизонтальное движение магистрали вдоль ее оси, которое может иметь место из-за тепловых расширений стальных стенок трубопровода.

Состоит подвижная конструкция из:

  • жесткого основания в виде швеллера;
  • полукруглого держателя в виде хомута;
  • крепежа хомута;
  • прокладки паронитовой;
  • катки.

Подвижные конструкции предполагают расстояние между ними с учетом прочности рабочей поверхности магистрали. Расстояние между опорами может меняться даже от диаметра трубы.

Делятся подвижные или скользящие конструкции на:

  1. Хомутовые крепления с кронштейнами.
  2. Подвесные диэлектрические опоры.
  3. Подвижные катковые конструкции.
  4. Скользящие шариковые опоры для поперечного движения магистрали.

Хомутовые подвижные конструкции производится для крепления надземных технологических магистралей с разным транспортируемым веществом.

Подвижная опора

Хомутовые скользящие опоры демонстрируют такие преимущества:

  • продолжительный срок службы;
  • удобство крепления;
  • прочность.

Скользящие конструкции удерживают трубопровод от вертикального перемещения, но допускают движение по горизонтали.

Расчет креплений трубопроводов

Расчет опоры трубопроводов заключается в том, чтобы выявить расстояние между ними на основании данных о прочности и прогибе магистрали, а также способе прокладки, параметрах трубы.

Чтобы выполнить расчет значений между подвижными конструкциями, используется таблица «Проектирование тепловых сетей» А.А. Николаева.

Например, таблица показывает такой расчет для горизонтального размещения: при минимальном диаметре трубы 20 мм и максимальной температуре рабочей среды 60˚С, расстояние между опорами будет составлять 60 см. Чем больше диаметр трубы, тем больше будет шаг между ними.

Для вертикального размещения, расчет шага крепления осуществляется по тому же принципу. К примеру, при диаметре магистрали 40 мм и температуре 20 градусов, опора для труб будет размещаться на удалении 138 см, при температуре 70 градусов – 113 см.

Неподвижные металлические опоры расставляются в зависимости от схематических характеристик тепловых коммуникаций. Как правило, их расчет предусматривает расположение конструкций возле ответвления магистрали и запорной арматуры, а также на прямых участках, исходя их характеристик компенсаторов между опорами.

Заготовки элементов труб с неподвижными опорами

Чтобы определить расстояние между неподвижными конструкциями трубопровода, выполняется расчет по формуле: L = 0,9 х ∆L / (a(t-tpo)), в которой

  • ∆L – способность компенсатора, исчисляется в мм (используется таблица);
  • а – коэффициент линейного расширения стальных стенок при температурных колебаниях, исчисляется в мм/м˚С;
  • L – длина отрезка трубопровода, для которого выполняется расчет, исчисляется в м;
  • t – расчет температуры рабочей среды при монтаже, исчисляется в ˚С;
  • t – температура окружающей среды;
  • 9 – значение погрешности (составляет 10%).

Монтаж щитовой железобетонной неподвижной опоры для трубопровода (видео)

Монтаж скользящих и неподвижных опор

После того, как вычисления расстояния между опорными конструкциями будут завершены, можно приступать к монтажу. Установка подвижных элементов проводится до протаскивания труб по футлярам. Устанавливая крепления, стоит следить за сбережением заводской целостности конструкции.

Металлические футляры следует изолировать при помощи бесшовного гидроизоляционного материала. На стык опоры и футляра наносится слой смазки для минимизации трения. После установки конструкции осуществляется приварка хомутов. Для надежности крепления также выполняется их стяжка. После завершения всех работ, место сварки лучше окрасить для дополнительной защиты.

Монтаж подвижных опорных конструкций происходит одновременно с прокладкой линейной части. Для его осуществления нет необходимости пользоваться специальной техникой. Для обеспечения надежности соединения применятся дуговая сварка.

Чтобы закрепить неподвижные опоры для газопроводов или других сетей, необходимо воспользоваться следующими деталями:

  • трубой из стали;
  • центратором;
  • термолентой;
  • пенополиуретаном;
  • листом горячекатаным не менее 30 мм;
  • оболочкой оцинкованной или полиэтиленовой.

Установка опорной конструкции осуществляется на бетонное основание. Оно происходит с определённым шагом для удобств возможного беспрепятственного ремонта участка магистрали.

trubypro.ru

Неподвижная опора для труб теплоснабжения

Если обратить внимание на окружающие нас трубопроводы, то станет понятно, что в обязательном порядке они поддерживаются на земле или над ней какими-либо опорами, что позволяет соединить в общую систему отдельные элементы.

Содержание статьи:

В итоге получается одна большая по протяженности система, где соединения играют особую роль, а потому они не должны терять своей надежности. В противном случае, если не позаботиться заранее о жестком креплении, то шаткой и, соответственно, ненадежной будет вся конструкция, а это просто не допустимо, если речь идет о трубах теплоснабжения.

Факторы, влияющие на прочность, особенности

Основополагающими факторами, от которых, собственно, и зависит прочность будущей системы, представлены: климатическими особенностями, массой самой конструкции и внешними вибрациями.

Вместе с тем, негативные воздействия помогают уменьшить опоры, встретить которые можно при организации систем теплоснабжения и других.

Как правило, в качестве материала для изготовления опор берется металл. Учитывая многочисленные особенности и нюансы, которыми полон процесс созидания опор, занимаются этим профессионалы. Важно понимать, что неправильный монтаж может в итоге обернуться самыми неприятными последствиями, устранять которые будет куда сложнее, чем предупреждать.

Тип металла, из которого будет сооружаться конструкция, побирается на основании его характеристик, главное условие – он должен выдерживать высокие нагрузки. Что касается расстояния между опорами, то его расчет производится с учетом диаметра труб, технологии установки и типа вещества, которое будет транспортироваться по трубам.

Технология монтажа, виды опор

Специалисты работают по двум основным технологиям, из которых первая подразумевает создание хомутов, а вторая – использование сварочного оборудования.

Любая подобная работа, и эта не исключение, начинается с чертежа опоры для труб теплоснабжения (неподвижной), где будут предусмотрены все нюансы будущей конструкции. Это очень ответственное дело, так сказать, основа основ, а потому доверить это лучше знающим специалистам.

В конструкции неподвижной опоры в качестве вспомогательных элементов, для сведения к минимуму последствий таких явлений, как перепады внутреннего давления, влияние температурного режима и различного рода вибраций, используются специальные компенсаторы.

Дополнительная функция, которую они призваны выполнять – это изоляция тепла.

Несложно предположить, что такие конструкции чаще встречаются в северных регионах, где резкие колебания температур не редкость, а, скорее, закономерность.

Для того чтобы понять, как выглядят те или иные конструкции, достаточно посмотреть на фото неподвижных опор для труб теплоснабжения.

Технология монтажа и конструктивные особенности, цены

Достаточно просты в установке и демократичны, в плане цены, корпусные приварные опоры, используемые для конструкций из стали. Хомут плоского и круглого типа могут иметь корпусные хомутовые опоры.

В частности: неподвижные варианты сочленяются с основанием сваркой; для креплений различного оборудования прибегают к помощи крутоизогнутых отводов, монтируемых под изгиб конкретной конструкции; посредством сварки устанавливают также щитовые опоры, обеспечивающие вертикальным участкам надежное крепление.

Область применения неподвижных опор довольно широка, а точнее, неограниченна, поскольку для использования они пригодны при строительстве любого трубопровода. Их заслуги сложно переоценить: они воспринимают и поглощают нагрузки, придают прочность всей линии в целом.

Для сравнения цен опор неподвижного типа для труб теплоснабжения, можно обратиться в специализированные строительные магазины, просмотреть форумы и сайты, или осведомиться у знающих людей.

Применение и преимущества

При прокладке подземных коммуникаций используется именно неподвижная опора для труб теплоснабжения в полиэтиленовой оболочке и опора для трасс. Размещаются элементы по всей длине трубы равномерно. При монтаже опора крепится в железобетонный каркас.

В числе преимуществ:

– безопасность трубопровода за счет того, что опора в силу своей конструкции исключает вероятность отклонения системы от проектных ограничений;

– уменьшается риск деформации под влиянием температур, вызванных температурными колебаниями транспортируемой среды;

– предотвращается деформация или разрушение проводящей системы;

– сокращаются капитальные затраты.

Что касается опор для труб теплоснабжения (неподвижных) ппу (пенополиуретан), то их использование в изоляции дает существенное преимущество в виде на порядок увеличенного срока службы трубопровода. Особенно актуально использование в качестве утеплителя сочетания ппу с защитной оболочкой из оцинкованного листа или полиэтилена.

Покрывающие снаружи оболочки придают трубе особенность прекрасно сохранять тепло, причем, не менее, чем на сорок-пятьдесят процентов. К тому же ППУ трубы нельзя «упрекнуть» в том, что они подвержены коррозии и воздействию внешних факторов, от которых, как известно, ничего хорошего не следует ожидать.

А такой важный показатель, как экономическая эффективность, проверен и подтвержден на практике.

7prom.ru

Неподвижные опоры теплотрасс (6 фото)

Подробности Раздел: Теплоснабжение Категория: Тепловые сети Создано 09.02.2015 17:43 Просмотров: 7115

Неподвижные опоры – являются элементом  любого трубопровода, придающим системе труб целостность и устойчивость. Опоры неподвижные предназначаются для приема и сглаживания усилий, появляющихся в трубопроводах вследствие температурных колебаний.

Неподвижные опоры предназначены фиксировать трубопровод и не позволять ему перемещаться в любом направлении под  весом транспортируемой среды. Опоры неподвижные используются практически во всех трубопроводных системах, несущей основой которых является стальная труба. Это трубопроводы теплоснабжения, отопления, горячего водоснабжения и другие.

Неподвижные опоры бывают двух видов: для трубопроводных систем надземной прокладки (в качестве гидроизоляции используется оцинкованная оболочка), или для трубопроводов подземной бесканальной прокладки (в качестве гидроизоляции используется полиэтиленовая оболочка).

Главные материалы, используемые при установке неподвижной опоры: труба стальная, лист стальной горячекатаный, центратор, пенополиуретан, оболочка полиэтиленовая, оболочка оцинкованная, термолента.

Сама неподвижная опора трубопровода представляет собой устройство из стальной трубы несущего главную нагрузку по удержанию от поперечного или продольного сдвига трубопровода стального фланца (стальной лист толщиной от 25 до 80 и более мм), стаканов из стальной трубы, защищающих от механического повреждения полиэтиленовую оболочку и оцинкованную оболочку при установке неподвижной опоры на теплотрассе, а также тепловую изоляцию из пенополиуретана. Что бы защитить конструкцию от влаги применяется термоусадочная лента.

Неподвижная опора трубопровода в процессе монтажа закрепляется железобетонными каркасами. Таким образом, трубопровод крепится в определенных точках и разделяется на отдельные участки. Протяженность данных участков теплотрассы определяется компенсирующей особенностью компенсаторов (в том числе сильфонных компенсаторов), устанавливаемых между двумя ближайшими неподвижными опорами для восприятия на себя температурных удлинений трубопровода в изоляции.

Неподвижные опоры служат для восприятия усилий, возникающих в трубопроводах в результате температурных изменений.

q-teplota.ru

Опоры трубопроводов: для чего нужны, классификация и особенности монтажа

Опоры для труб — это незаменимые конструктивные элементы при прокладке различных коммуникаций. Эти изделия принимают на себя нагрузку трубопровода, которая впоследствии распределяется по несущим конструкциям или же передаётся почве. На сегодняшний день существует множество разновидностей трубопроводов, которые отличаются по материалу изготовления и техническим характеристикам. Для каждого типа труб требуются различные опоры.

Существует множество разновидностей опор для различных типов трубопроводов

Для чего нужны опоры и где они используются?

Опоры трубопроводов выполняют очень важную функцию — фиксацию коммуникации в необходимом положении. Помимо этого, эти изделия исключают деформационный процесс коммуникации под влиянием температур. Во многих трубопроводах при транспортировке той или иной рабочей среды возникают вибрации. Гашение вибраций является ещё одной полезной функцией опорных элементов.

Опоры трубопроводов влияют на надёжность конструкции в целом. Поэтому очень важно правильно установить эти изделия, чтобы они хорошо справлялись с поставленными перед ними задачами.

Опоры различаются по виду и назначению. Эксплуатационная область этих приспособлений довольно широка. Они используются для фиксации таких коммуникаций:

  • трубопроводные конструкции на различных предприятиях;
  • жилищно-коммунальные коммуникации;
  • арматура атомных электростанций;
  • арматура теплоэлектростанций (ТЭС);
  • газо- и нефтепроводы.

Опора под газовую трубу должна отличаться высокими техническими характеристиками, особенно если трубопровод прокладывается в неблагоприятных климатических условиях. Кроме этого, опора для газовой трубы должна предохранять коммуникацию от возможных поломок в местах её крепления.

Опоры удерживают трубы в заданном направлении и предохраняют их от деформаций

Особенности опор для трубопроводов

Эксплуатационная безопасность и необходимые показатели герметичности различных коммуникаций, обеспечиваются не только благодаря качественным трубам, но и за счёт использования вспомогательного оборудования. К такому оборудованию и относятся опоры для крепления труб.

Если обратиться к соответствующей документации, то там можно найти информацию по поводу того, что такой элемент, как опора не является отдельной строительной деталью, а регламентируется как конструктивный элемент самой коммуникации. Опоры выполняют множество полезных функций. Рассмотрим основные из них:

  • это изделие защищает трубу от повреждения в точке соприкосновения с опорной конструкцией;
  • обеспечивает правильное расположение трубопровода в пространстве;
  • распределяет нагрузки по всей длине коммуникации и способствует их передаче на опорные конструкции;
  • устраняет вибрационные волнения, а также снижает напряжение в трубопроводе.

В народе опоры для крепления труб ещё называют «подвесками», однако это не во всех случаях правильное название. Дело в том, что подвеска является одной из разновидностей опор. Поэтому обобщение всех изделий этого типа под таким названием — неверное решение.

Все опоры для трубопроводов разделяются на виды в зависимости от двух основных характеристик:

  • вариант установки;
  • подвижность или неподвижность.

Опоры делятся на подвижные и неподвижные, последние применяют там, где нужна жесткая фиксация труб

По варианту установки выделяют два типа этих конструктивных элементов трубопровода:

  • обычные;
  • подвесные изделия.

Обратите внимание! Особенностью подвесных приспособлений является то, что они монтируются выше трубопроводной оси.

Подвесные модели можно фиксировать к плитам, потолочным перекрытиям и т. д. Стоит сказать, что подвесные модели по варианту установки относятся к подвижному типу. Подвижность опоры — это свойство, которое позволяет ей осуществлять движение вдоль или поперёк оси трубопровода. Подвижные опоры способны перемещаться в двух вышеперечисленных направлениях, а неподвижные отличаются тем, что крепко фиксируют трубу в необходимом положении.

Рассмотрим две основные функции, которые выполняют подвижные модели:

  • такие изделия передают усилие опорной реакции трубопровода на опорную конструкцию. Стоит отметить, что этот процесс должен происходить без изменений положения точки, в которой осуществляется передача опорной реакции;
  • снижение коэффициента напряжения в стенках трубопровода.

Разновидности опор для трубопроводов

На сегодняшний день существует несколько разновидностей опор для трубопроводов, которые отличаются по своему конструктивному исполнению и назначению. Рассмотрим основные разновидности опор, которые используются при монтаже трубопроводных конструкций.

Тип опоры подбирается в зависимости и вида магистрали и условий ее работы

Бескорпусные опоры. Такие опоры выполняют те же функции, что и хомуты и подразделяются на две основные группы:

  • подвижные бескорпусные изделия;
  • неподвижные бескорпусные изделия.

Стоит отметить, что само понятие скользящей опоры несопоставимо с подвижным бескорпусным изделием. Монтировать подвижные жёсткие приспособления нужно без жёсткого стягивания хомута, что позволяет коммуникации чувствовать себя свободно и передвигаться в продольной плоскости. Такие модели ещё называют хомутовыми направляющими. Неподвижные модели монтируются довольно просто: крепко затягиваются к основанию, что исключает движение трубопроводной конструкции.

Корпусные приварные. Как правило, такая разновидность опор применяется при монтаже стальных коммуникаций. Крепление такого приспособление осуществляется посредством сварки (отсюда и название).

Такие модели считаются самыми удобными с точки зрения производства и, кроме этого, отличаются довольно демократичной ценой. Как и в предыдущем случае, корпусные приварные опоры подразделяются на подвижные и неподвижные. В некоторых нормативных документах подвижная корпусная приварная опора регламентируется как скользящая. Конструктивное исполнение корпусных приварных приспособлений может быть различным.

Корпусные хомутовые. Такие модели условно подразделяются на две группы:

  • с хомутом, имеющим круглую форму (в этом случае материалом изготовления хомута служит металлический прут);
  • с хомутом, который имеет плоскую форму (изготавливается из металлической полосы).

Как и другие опоры, корпусные хомутовые модели могут быть подвижными (скользящими) и неподвижными. Изделия, которые имеют плоский хомут, применяются по большему счёту при монтаже стальных коммуникаций, однако, в некоторых случаях их используют для предизолированных трубопроводных конструкций. А модели, обладающие круглым хомутом, используются только при монтаже стальных трубопроводов. Одной из разновидностей таких опор считается бугельная опора, которая отличается от других тем, что имеет рёбра жёсткости. Рёбра жёсткости необходимы для усиления изделия.

Опору с плоским хомутом можно использовать для крепления и обычных стальных, и предизолированных труб

Опоры под отвод. Монтируются специально под изгиб коммуникации, а именно — под отвод. Существуют такие разновидности опор под отводы:

  • под отводы гнутого типа;
  • под сварные отводы.

Такие модели, с эксплуатационной точки зрения, разделяются на: подвижные и неподвижные. Кроме этого, такие модели применяются для фиксации различной арматуры при монтаже.

Опоры крепления вертикальных трубопроводов. Такие модели используют для закрепления вертикальных участков трубопроводной конструкции. По своей конструкции они являются «лапами», которые с помощью сварки фиксируются на трубопроводе. Опираются такие модели на балки или плиты перекрытий.

Щитовые опоры. Такие модели имеют такой же вид, как и предыдущие и используются в случае, когда необходима прокладка трубопровода через стену. Как правило, такие приспособления являются неподвижными.

Щитовая опора, как правило, является неподвижной, ее можно применять при проходе трубы сквозь стену

Подвески трубопроводов. Подвески — это специальные приспособления, которые применяются для фиксации коммуникации к балке или же потолку. В зависимости от конструктивных особенностей и способа монтажа опоры на трубу их подразделяют на две группы:

Кроме этого, они могут быть:

  • однотяжными (состоять из одной тяги);
  • двутяжными;

Движение трубопровода, который зафиксирован такими приспособлениями обеспечивается кардановым подвесом.

Пружинные блоки. Эти приспособления монтируются на различные коммуникации и выполняют амортизирующую функцию, распределяя нагрузки по всей длине трубопровода и исключая его деформацию. Такое изделие применяется как конструктивный элемент опор или подвесок.

Материалы изготовления

Опоры под трубопроводы изготавливаются в основном из металлических материалов. Это связано с тем, что такие элементы должны иметь отличные прочностные характеристики и сопротивляемость к воздействию давления. Монтаж труб на опорах — ответственное мероприятие, которое требует наличия специальных строительных навыков и знаний, а также опыта. В случае неправильного монтажа, может возникнуть аварийная ситуация, так как на эти конструктивные элементы трубопроводной конструкции оказывается довольно сильное давление.

Опоры чаще всего изготавливаются из металлов, устойчивых к коррозии

Как правило, для производства опор трубопроводов применяется такой материал, как сталь. Сталь обладает высоким коэффициентом прочности и как нельзя лучше подходит для этих целей. Однако, помимо стали, при выполнении этих конструктивных элементов трубопровода используются и другие металлы. Рассмотрим их:

  • алюминий;
  • титан;
  • латунь;
  • медь.

Опоры из вышеперечисленных материалов используются для различных бытовых или специализированных целей. Стоит отметить, что опоры для трубопроводов должны обладать хорошей устойчивостью к губительному воздействию коррозии, поэтому на стадии производства на их поверхность наносят разнообразные защитные составы.

Полезная информация! В качестве защитного антикоррозийного состава могут выступать различные краски и эмали, а также поверхность изделия может быть оцинкована. Оцинкованная сталь обладает высокой резистентностью к коррозийным воздействиям. А также стоит отметить, что нанесение различных защитных составов на трубы, помимо защитной функции, придаёт им более презентабельный внешний вид.

Помимо этого, опоры могут изготавливаться из различных современных полимерных материалов и используются при монтаже хозяйственных коммуникаций внутри помещений. Самым востребованным полимером для производства этих приспособлений считается полипропилен (ПП). Опора полипропиленовая обладает следующими преимуществами:

  • отличается низкой стоимостью, в сравнении с металлическими аналогами;
  • для монтажа полипропиленового изделия не требуется сварочного оборудования;
  • благодаря своему малому весу облегчает конструкцию в целом;
  • ускоряет процесс прокладки коммуникации.

При прокладке бытовых сетей из полимерных труб применяют опоры из полипропилена

Свойства полипропилена позволяют использовать его при монтаже трубопроводов. А также опоры для полипропиленовых хозяйственных труб выполняют изоляционную функцию, поэтому им не страшны электрические воздействия.

Помимо этого, стоит упомянуть о ещё одном материале — бетоне. Бетон используют при производстве колец опор и их фундаментной части. Обязательно нужно отметить, что производство опор регламентируется государственным стандартами качества и любое отступление от, описанного в той документации, производственного процесса чревато получением некачественной продукции.

Особенности и устройство неподвижных опор для трубопроводов

Неподвижные опоры для различных трубопроводов необходимы для чёткой фиксации коммуникации в пространстве. Использование таких опор направлено на устранение сдвигов трубопровода в продольном или же поперечном направлении.

Неподвижные модели используются для фиксации трубопроводов, монтируемых двумя способами:

  • наружным;
  • внутренним (под землёй).

Установка таких опор производится посредством их фиксации каркасами из железобетона. Таким образом, в нужных участках трубопровода организуются опорные конструкции. Опорные конструкции на трубопроводе располагаются не равноудалённо друг от друга, а разделяют коммуникацию на сегменты, которые имеют различную длину. Длина сегмента зависит от особенностей специальных компенсаторов, которые располагаются между неподвижными опорами.

В зависимости от типа прокладки магистрали используются опоры с изолирующим слоем либо без него

При наружной и внутренней прокладке коммуникаций широко применяют неподвижные опоры для труб. В случае если прокладка будет осуществляться бесканальным методом под землёй, используются опоры, оснащённые эффективной гидроизоляцией. Как правило, в качестве гидроизоляции выступает полиэтиленовая (ПЭ) оболочка. При наружном монтаже коммуникации используется оцинкованный гидроизолятор.

Рассмотрим конструктивные элементы, которые входят в состав неподвижной модели:

  • стальная труба;
  • стальной лист, полученный в результате горячей прокатки;
  • пенополиуретан (ППУ);
  • специальная термостойкая лента;
  • оцинкованная оболочка;
  • центратор;
  • оболочка из полиэтилена.

Важно! При производстве неподвижных опор для трубопроводных коммуникаций применяются только самые прочные и надёжные марки стали.

Лист стали, который производится посредством горячей прокатки, подразделяется на три вида в зависимости от качества:

  • обыкновенный;
  • низколегированный;
  • конструкционный (является наиболее качественным).

Центратором называют конструктивный элемент неподвижной опоры, который упрощает отцентровку торцов труб перед их соединением. На сегодняшний день центраторы подразделяются на два основных типа:

Во многих случаях используют специальные центраторы, позволяющие правильно разместить трубу внутри опоры

Наружные устройства осуществляют отцентровку трубы с наружной стороны и подразделяются на:

  • звенные;
  • эксцентриковые;
  • гидродомкратные.

Звенные центраторы могут осуществлять отцентровку труб с показателями сечения от 57 до 2224 мм. Они отличаются отличной устойчивостью к низким температурам. Это связано с тем, что их производят из морозоустойчивой стали. Второй вариант центраторов является универсальным, так как способен отцентровывать трубы с любыми показателями сечения. Гидродомкратные центраторы используются для отцентровки очень тяжёлых труб или же труб с деформированными областями. Усилие, которое способно передаваться посредством таких устройств, составляет примерно 12 тонн.

Внутренние центраторы имеют одно важное преимущество — при их применении возможна длительная сварка труб изнутри. Благодаря этому преимуществу швы выполняются более качественно. Недостаток же таких изделий в том, что из-за их веса для их транспортировки необходимо использовать спецтехнику.

Рассмотрим основные эксплуатационные сферы, где используются неподвижные опоры трубопроводов:

  • при прокладке магистральной газовой трубы или нефтепровода;
  • коммуникаций различной направленности на предприятиях;
  • для конструкций на атомных и тепловых станциях.

Такие опоры широко используются при прокладке коммуникаций в условиях низких температур. Эксплуатация этих элементов трубопроводной конструкции в северных регионах позволяет продлить срок службы трубопровода.

Неподвижные опоры применяют при прокладке магистралей, работающих в особых условиях — нефтяных, газовых, отопительных сетей

Монтаж неподвижных опор

Установка таких опор проводится на трубопроводы различной направленности. Как правило, их сразу же вделывают на месте монтажа. Как уже говорилось выше, такие опоры разделяют трубопровод на сегменты, а между опорами монтируются специальные компенсаторы сильфонного типа. Компенсаторы максимально предохраняют трубопровод от деформации, которая возникает в результате воздействия низких температур.

Неподвижные модели с помощью сварочного оборудования фиксируют к платформам и посредством крепежей закрепляют к трубопроводу. Стоит отметить, что для более надёжного крепления к этим приспособлениям приваривают специальные металлические пластины (вплотную к торцам хомута).

Существует одно важное правило: между опорой и хомутом необходимо соблюдать определённый зазор, который должен равняться 1,5 мм. Кроме этого, для того чтобы обезопасить коммуникацию от коррозийных воздействий между ней и неподвижной опорой укладывают лист алюминия.

Особенности и характеристики скользящих опор для трубопроводов

Скользящая опора для трубопроводов используется, как правило, при прокладке коммуникаций на поверхности земли (наружный способ). Основная функция такого устройства заключается в том, чтобы обеспечить свободное перемещение трубопровода как по горизонтали, так и по вертикали. Кроме этого, вспомогательной функцией таких приспособлений считается защита трубопроводной конструкции от истирания.

Скользящие опоры монтируются на тех магистралях, трубы которых могут сужаться и расширяться под действием температуры

Обратите внимание! Скользящие опоры монтируются на коммуникации, которые нуждаются в компенсации сезонных перепадов температур. Из-за температурных перепадов такие трубопроводы расширяются и сужаются в двух вышеупомянутых плоскостях.

Скользящие модели обеспечивают устойчивость трубопроводной коммуникации и уравновешивают её перемещение, которое происходит из-за температурных колебаний.

Рассмотрим конструктивные элементы, которые входят в состав скользящей модели:

  • основание, в качестве которого может выступать, например, уголок;
  • полукруглый держатель для трубы (производится из металла);
  • специальная прокладка;
  • крепёжные элементы (гайки и болты).

Все подвижные опоры классифицируются на три основных вида:

  • жёсткие;
  • упругие;
  • подвижные опоры постоянного усилия.

Жёсткие опоры подразделяются на:

  • направляющие опоры;
  • жёсткие подвески;
  • опоры скольжения.

Направляющие изделия препятствуют перемещению коммуникации вниз и в определённом направлении по горизонтали. Подвески жёсткого типа являются приспособлениями, которые обеспечивают наибольшую подвижность трубопроводной конструкции. Опора скольжения исключает перемещение вертикально вниз. Опоры упругого типа обладают такой жёсткостью только в случае, когда труба перемещается в вертикальном направлении. В этом случае существует определённая закономерность: чем сильнее нагрузка на опорный элемент, тем дальше будет смещение трубопровода. Опора постоянного усилия выдерживает оказываемое на неё усилие независимо от перемещения коммуникации.

Для защиты от ржавчины изделие может быть покрыто грунтовкой и/или окрашено

Для того чтобы обезопасить это устройство от коррозийных воздействий на него наносят специальный грунтовый состав. Грунтовый состав для большей надёжности наносится в несколько слоёв. Иногда вместо грунта, опора может окрашиваться специальной грунтовой эмалью. А для того чтобы добиться максимальных показателей надёжности, как правило, приспособление оснащается порошковым или цинковым покрытием (оцинковка).

Наиболее часто такие изделия изготавливаются из прочной углеродистой стали, однако, если трубопровод предназначен для монтажа и эксплуатации в тяжёлых температурных условиях, используются приспособления, выполненные из низколегированной стали.

Все скользящие опоры классифицируются на несколько основных видов по типу конструкции:

  • изделие на кронштейнах (крепёжные элементы);
  • хомутовая;
  • шариковая;
  • диэлектрическая;
  • катковая (роликовая).

Роликовая опора используется в том случае, когда необходимо уменьшить силу трения между её основой и верхней частью. Трение возникает при движении трубопровода. Уменьшение силы трения происходит благодаря конструктивным элементам такой опоры — каткам.

Диэликтрические скользящие модели применяются преимущественно для труб, произведённых из следующих материалов:

  • углеродистая сталь;
  • низкоуглеродистая сталь.

Роликовые опоры широко применяют при строительстве магистралей для протяжки труб в горизонтальном направлении

Изоляция в таких опорах выполняется из специального материала — листового паранита. Паранит включает в себя такие составляющие:

  • каучук;
  • асбест;
  • дополнительные порошковые добавки.

Шариковые скользящие модели выполняются из стали и являются специфичным крепежным элементом. Применение таких изделий позволяет коммуникации передвигаться как в продольном, так и в поперечном направлении. Благодаря этому шариковые скользящие опоры применяются на электростанциях или при прокладке теплотрасс.

Монтаж скользящих опор

Стоит отметить, что при составлении проекта коммуникации, в которой будут использоваться скользящие опоры, рекомендуется заранее определить дистанцию между такими опорами. Такой расчёт производится для каждого конкретного случая отдельно. Это связано с тем, что для расчёта необходимы такие характеристики, как: назначение коммуникации, длина, показатели сечения труб, материал изготовления и т. д.

В первую очередь для вычисления дистанции между скользящими опорами, нужно знать в каких целях будет использоваться коммуникация. Потому что для трубопроводов, которые осуществляют транспортировку горячей воды, такая дистанция будет меньше, чем для холодного водопровода.

Важно! Стоит отметить, что установка этих изделий производится перед протаскиванием трубы в защитный кожух (футляр).

Как правило, между опорным приспособлением скользящего типа и металлическим кожухом укладывают гидроизоляционный материал. Кроме этого, внутреннюю поверхность трубы и гидроизоляционный материал смазывают специальной графитовой смазкой. Это необходимо, чтобы избежать нежелательного трения.

Далее, производится крепёж хомутов с использованием сварочного оборудования. После приваривания хомуты надёжно затягиваются. Установка таких опор выполняется без использования спецтехники, что является очень удобным и ускоряет рабочий процесс.

Помимо этого, при монтаже скользящих опор необходимо неукоснительно соблюдать все нормы и правила, прописанные в соответствующей документации, а также выполнять все условия техники безопасности.

trubamaster.ru

25.Конструкция подвижных и неподвижных опор. Расчет неподвижной опоры.

Опоры служат для восприятия усилия от трубопроводов и передачи их на несущие конструкции или грунт, а также для обеспечения организованного совместного перемеще­ния труб и изоляции при температурных деформациях. При сооруже­нии теплопроводов применяют опоры двух типов: подвиж­ные и неподвижные.

Подвижные опоры воспринимают вес теплопровода и обеспечивают его свободное перемещение на строительных конструкциях при температурных деформациях. При пере­мещении трубопровода подвижные опоры перемещаются вместе с ним. Подвижные опоры используют при всех спо­собах прокладки, кроме бесканальной. При бесканальной прокладке теплопровод укладывается на нетронутый грунт или тщательно утрамбованный слой песка. При этом под­вижные опоры предусматривают только в местах поворота трассы и установки П-образных компенсаторов, т. е. на участках, где трубопроводы прокладывают в каналах. Подвижные опоры испытывают главным образом верти­кальные нагрузки от массы трубопроводов

По принципу свобод­ного перемещения различают опоры скольжения, качения и подвесные. Скользящие опоры, применяют независимо от направления горизонтальных перемещений трубопроводов при всех способах прокладки и для всех диаметров труб. Эти опоры просты по конструкции и надежны в эксплу­атации.

Катковые опоры применяют для труб диаметром 175 мм и более при осевом перемещении труб, при прокладке в тоннелях, коллекторах, на кронштейнах и на отдельно стоящих опорах. Применение катковых опор в непроходных каналах нецелесообразно, так как без над­зора и смазки они быстро корродируют, перестают вращаться и начинают работать фактически как скользящие опоры. Катковые опоры обладают меньшим трением, чем скользящие, однако при плохом уходе катки перекашива­ются и могут заклиниваться. Поэтому им необходимо дать правильное направление. Для этого в катках предусматри­вают кольцевые выточки, а на опорной плите — направля­ющие планки.

Роликовые опоры (применяют редко, так как трудно обеспечить вращение роликов. Катковые и роликовые опоры надежно работают на прямолинейных участках сети. На поворотах трассы трубопроводы перемещаются не только в продольном, но и в поперечном направлении. Поэтому установка катковых и роликовых опор на кри­волинейных участках не рекоменду­ется В этом случае используют шари­ковые опоры. В этих опорах шарики свободно перемещаются вместе с башмаками по подкладному листу, удерживаются от вы­катывания за пределы опоры выступами опорного листа и башмака.

Если по местным условиям прокладки теплопроводов относительно несущих конструкций скользящие и катковые опоры не могут быть установлены, применяются подвесные опоры. Нежесткая конструкция подвески поз­воляет опоре легко поворачиваться и перемещаться вместе с трубопроводом. В результате по мере удаления от непод­вижной опоры углы поворота подвесок увеличиваются, со­ответственно возрастает перекос трубопровода и напряже­ние в тягах под действием вертикальной нагрузки трубо­провода.

Подвесные опоры по сравнению со скользящими созда­ют на горизонтальных участках значительно меньшие уси­лия вдоль оси трубы.

Неподвижными опорами трубопроводы как бы делятся на самостоятельные участки. С помощью неподвижных опор трубы жестко закрепляют в определенных точках трас­сы между компенсаторами или участками с естественной компенсацией температурных деформаций, которые вос­принимают, кроме вертикальных нагрузок значительные го­ризонтальные усилия, направленные по оси трубопровода и складывающиеся из неуравновешенных сил внутреннего давления, сил сопротивления свободных опор и реакции компенсаторов. Наибольшее значение имеют силы внутрен­него давления. Поэтому для облегчения конструкции опо­ры стараются расположить ее на трассе таким образом, чтобы внутренние давления в трубопроводе были уравно­вешены и не передавались на опору. Те опоры, на которые реакции внутреннего давления не передаются, называются разгруженными неподвижными опорами; те же опоры, кото­рые должны воспринимать неуравновешенные силы внутрен­него давления, называются неразгруженными опорами.

Существуют промежуточные и концевые опоры. На про­межуточную опору действуют усилия с обеих сторон, на концевую—с одной. Неподвижные опо­ры труб рассчитывают на наибольшую горизонтальную нагрузку при различных режимах работы теплопроводов, в том числе при открытых и закрытых задвижках

Неподвижные опоры предусматривают на трубопрово­дах при всех способах прокладки тепловых сетей. От пра­вильного размещения неподвижных опор по длине трас­сы тепловых сетей во многом зависит величина температур­ных деформаций и напряжений в трубах. Неподвижные опоры устанавливают на ответвлениях трубопроводов, в местах размещения запорной арматуры, сальниковых компенсаторов. На трубопроводах с П-образными компен­саторами неподвижные опоры размещают между компенса­торами. При бесканальных прокладках тепловых сетей, когда не используется самокомпенсация трубопроводов, неподвижные опоры рекомендуется устанавливать на пово­ротах трассы.

Расстояние между неподвижными опорами определяют исходя из заданной конфигурации трубопроводов, темпера­турных удлинений участков и компенсирующей способности устанавливаемых компенсаторов. Неподвижные закреп­ления трубопроводов выполняют различными конструкция­ми, которые должны быть достаточно прочными и жестко удерживать трубы, не допуская их перемещения относи­тельно поддерживающих конструкций.

Конструкции неподвижных опор состоят из двух основ­ных элементов: несущих конструкций (балок, железобетонных плит), на которые передаются усилия от трубопрово­дов, и собственно опор, при помощи которых осуществля­ется неподвижное закрепление труб (приварные косынки, хомуты). В зависимости от способа прокладки и места установки применяют неподвижные опоры: упорные, щито­вые и хомутовые. Опоры с вертикальными двусторонними упорами и лобовые применяют при установ­ке их на каркасах в камерах и тоннелях и при проклад­ке трубопроводов в проходных, полупроходных и в непро­ходных каналах. Щитовые опоры применяют как при бесканальной прокладке, так и при прокладке теплопроводов в непроходных каналах при размещении опор вне камер.

Щитовые неподвижные опоры представляют собой вер­тикальные железобетонные щиты с отверстиями для про­хода труб. Осевые усилия передаются на железобетонный щит приваренными к трубопроводу с обеих сторон кольца­ми, усиленными ребрами жесткости. До недавнего времени между трубой и бетоном прокладывали асбест. В настоя­щее время применение асбестовых набивок не допускается. Нагрузка от трубопроводов тепловых сетей через щитовые опоры передается на днище и стенки канала, а при беска­нальной прокладке — на вертикальную плоскость грунта. Щитовые опоры выполняют с двойным симметричным армированием, так как действующие усилия от труб могут быть направлены в противоположные стороны. В нижней части щита делают отверстия для прохода воды (в случае попадания ее в канал).

Расчет неподвижных опор.

Неподвижные опоры фик­сируют положение трубопровода в определенных точках и восприни­мают усилия, возникающие в ме­стах фиксации под действием темпе­ратурных деформаций и внутренне­го давления.

Опоры оказывают весьма важное влияние на работу теплопровода. Нередки случаи серьезных аварий из-за неправильного размещения опор, неудачного выбора конструк­ций или небрежного монтажа. Весь­ма важно, чтобы все опоры были нагружены, для чего необходимо при монтаже выверять расстановку их по трассе и положение по вы­соте. При бесканальной прокладке обычно отказываются от установки свободных опор под трубопроводами во избежание неравномерных проса­док, а также дополнительных изги­бающих напряжений. В этих про­кладках трубы укладываются на не­тронутый грунт или тщательно ут­рамбованный слой песка.

От пролета (расстояния) между опорами зависит изгибающее напря­жение, возникающее в трубопрово­де, и стрела прогиба.

При расчете изгибающих напря­жений и деформаций трубопровод, лежащий на свободных опорах, рас­сматривается как многопролетная балка. На рис. Т.с.19 приведена эпю­ра изгибающих моментов многопро­летного трубопровода.

Рассмотрим усилия и напряже­ния, действующие в трубопроводах.

Примем следующие обозначения:

М — силовой момент, Н*м; QB, Qг— усилие вертикальное и гори­зонтальное, Н; qв, qг— удельная на­грузка на единицу длины, верти­кальная и горизонтальная, H/m;..N— горизонтальная реакция на опоре, Н.

Максимальный изгибающий мо­мент в многопролетном трубопрово­де возникает на опоре. Величина этого момента (9.11)

где q — удельная нагрузка на еди­ницу длины трубопровода, Н/м; — длина пролета между опорами, м. Удельная нагрузка q определяет­ся по формуле (9-12)

где qB — вертикальная удельная на­грузка, учитывающая вес трубопро­вода с теплоносителем и тепловой изоляцией; qг — горизонтальная удельная нагрузка, учитывающая ветровое усилие,

(9-13)

где w — скорость ветра, м/с; — плотность воздуха, кг/м3; dи — наружный диаметр изоляции трубо­провода, м; k — аэродинамический коэффициент, равный в среднем 1,4—1,6.

Ветровое усилие должно учиты­ваться только в надземных тепло­проводах открытой прокладки.

Изгибающий момент, возникаю­щий в середине пролета,

(9.14)

На расстоянии 0,2 от опоры из­гибающий момент равен нулю.

Максимальный прогиб имеет ме­сто в середине пролета.

Стрела прогиба трубопровода, (9.15)

На основании выражения (9-11) определяется пролет между свобод­ными опорами

(9-16) откуда ,м (9-17)

При выборе пролета между опо­рами для реальных схем трубопро­водов исходят из того, чтобы при наиболее неблагоприятных режимах работы, например при наиболее вы­соких температурах и давлениях теп­лоносителя, суммарное напряжение от всех действующих усилий в са­мом слабом сечении (обычно свар­ном шве) не превосходило допусти­мой величины [].

Предварительную оценку рас­стояния между опорами можно про­извести на основе уравнения (9-17), принимая напряжение от изгиба 4 равным 0,4-0,5 допускаемого напряжения:

Неподвижные опоры воспринимают реакцию внутреннего давления, свободных опор и

компенсатора.

Результирующее усилие, действующее на неподвижную опору, может быть представлено в виде

, где

а - коэффициент, зависящий от направления действия осевых усилий внутреннего давления с обоих сторон опоры. Если опора разгружена от усилия внутреннего давления, то а =0, иначе а =1; р - внутреннее давление в трубопроводе; - площадь внутреннего сечения трубопровода; - коэффициент трения на свободных опорах; - разность длин участков трубопровода с обеих сторон неподвижной опоры; - разность сил трения осевых сколь­зящих компенсаторов или сил упругости гибких компенсаторов с обоих сторон неподвиж­ной опоры.

26. Компенсация тепловых удлиннений трубопроводов систем теплоснабжения. Основы расчета гибких компенсаторов.

В тепловых сетях в настоящее время наиболее широко применяются сальниковые, П- образные, а в последнее время и сильфонные (волнистые) компенсаторы. Кроме специальных компенсаторов используют для компенсации и естественные углы поворотов теплотрассы - самокомпенсацию. Компенсаторы должны иметь достаточную компенсирующую способность для восприятия температурного удлинения участка трубопровода между неподвижными опорами, при этом максимальные напряжения в радиальных компенсаторах не должны превышать допускаемых (обычно 110 МПа). Необходимо также определить реакцию компенсатора, используемую при расчетах нагрузок на неподвижные опоры. Тепловое удлинение расчетного участка трубопровода, мм, определяют по формуле

, (2.81)

где - средний коэффициент линейного расширения стали, мм/(м · оС), (для типовых расчетов можно принять=1,2· 10ˉ² мм/(м · оС),

- расчетный перепад температур, определяемый по формуле , (2.82)

где - расчетная температура теплоносителя,оС;

- расчетная температура наружного воздуха для проектирования отопления, оС;

L- расстояние между неподвижными опорами, м.

Гибкие компенсаторыв отличие от сальниковых характеризуются мень­шими затратами на обслуживание. Их применяют при всех способах прокладки и при любых параметрах теплоносителя. Использование сальниковых компенса­торов ограничивается давлением не более 2,5 МПа и температурой теплоно­сителя не выше 300°С. Их устанавли­вают при подземной прокладке трубопро­водов диаметром более. 100 мм, при над­земной прокладке на низких опорах труб диаметром более 300 мм, а также в стес­ненных местах, где невозможно разме­стить гибкие компенсаторы.

Гибкие компенсаторы изготовляют из отводов и прямых участков труб с по­мощью электродуговой сварки. Диа­метр, толщина стенки и марка стали ком­пенсаторов такие же, как и трубопрово­дов основных участков. При монтаже гибкие компенсаторы располагают го­ризонтально; при вертикальном или на­клонном размещении требуются воз­душные или дренажные устройства, ко­торые затрудняют обслуживание.

Для создания максимальной компен­сационной способности гибкие компен­саторы перед монтажом растягивают в холодном состоянии и в таком положе­нии закрепляют распорками. Величину

растяжки компенсатора записывают в специальный акт. Растянутые компенса­торы присоединяют к теплопроводу с по­мощью сварки, после чего распорки уда­ляют. Благодаря предварительной рас­тяжке компенсационная способность уве­личивается почти вдвое. Для установки гибких компенсаторов устраивают ком­пенсаторные ниши. Ниша представляет собой непроходной канал такой же кон­струкции, по конфигурации соответст­вующий форме компенсатора.

Сальниковые (осевые) компенсаторыизготовляют из труб и из листовой стали двух типов: односторонние и двусторон­ние. Размещение двусторонних компен­саторов хорошо сочетается с установ­кой неподвижных опор. Сальниковые компенсаторы устанавливают строго по оси трубопровода, без перекосов. На­бивка, сальникового компенсатора представляет собой кольца, выполненные из асбестового прографиченного шнура и термостойкой резины. Осевые компенса­торы целесообразно применять при бесканальной прокладке трубопроводов.

Компенсационная способность саль­никовых компенсаторов с увеличением диаметра повышается.

Расчет гибкого компенсатора.

Тепловое удлинение расчетного участка трубопровода , мм, определяют по формуле

, (2.81)

где - средний коэффициент линейного расширения стали, мм/(м · оС), (для типовых расчетов можно принять=1,2· 10ˉ² мм/(м · оС),

- расчетный перепад температур, определяемый по формуле

, (2.82)

где - расчетная температура теплоносителя,оС;

- расчетная температура наружного воздуха для проектирования отопления, оС;

L- расстояние между неподвижными опорами, м.

Компенсирующую способность сальниковых компенсаторов, уменьшают на величину запаса - 50 мм.

Реакция сальникового компенсатора - сила трения в сальниковой набивке определяется по формуле, (2.83)

где - рабочее давление теплоносителя, МПа;

- длина слоя набивки по оси сальникового компенсатора, мм;

- наружный диаметр патрубка сальникового компенсатора, м;

- коэффициент трения набивки о металл, принимается равным 0,15.

Технические характеристики сильфонных компенсаторов приведены в табл. 4.14 - 4.15 [5]. Осевая реакция сильфонных компенсаторов складывается из двух слагаемых

(2.84)

где - осевая реакция, вызываемая деформацией волн, определяемая по формуле

, (2.85)

где l- температурное удлинение участка трубопровода, м;- жесткость волны, Н/м, принимаемая по паспорту компенсатора;n- количество волн (линз).- осевая реакция от внутреннего давления, определяемая по формуле

, (2.86)

где - коэффициент, зависящий от геометрических размеров и толщины стенки волны, равный в среднем 0.5 - 0.6;

Dиd– соответственно наружный и внутренний диаметры волн, м;

- избыточное давление теплоносителя, Па.

При расчете самокомпенсации основной задачей является определение максимального напряжения у основания короткого плеча угла поворота трассы, которое определяют для углов поворотов 90опоформуле; (2.87)

для углов более 90о, т.е. 90+, по формуле(2.88)

где l- удлинение короткого плеча, м;l- длина короткого плеча, м;Е- модуль продольной упругости, равный в среднем для стали 2· 105 МПа;d- наружный диаметр трубы, м;

- отношение длины длинного плеча к длине короткого.

studfiles.net


Смотрите также