(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Развертка трубы формула


Глава VII. Гибка металла

Рассчитать площадь поверхности или сечения трубопровода помогает формула длины развертки заготовки трубы. Расчет основывается на величине будущей трассы и диаметре планируемой конструкции. В каких случаях требуются такие вычисления и как они делаются, расскажет данная статья.

Когда нужны расчеты

Параметры рассчитываются на калькуляторе или с помощью онлайн-программ

Какую площадь должна иметь поверхность трубопровода, важно знать в следующих случаях.

  • При расчете теплоотдачи «теплого» пола или регистра. Здесь высчитывается суммарная площадь, которая отдает помещению тепло, исходящее из теплоносителя.
  • Когда определяются потери тепла по пути от источника тепловой энергии к обогревательным элементам – радиаторам, конвекторам и т.д. Чтобы определить количество и размеры таких приборов, нужно знать величину калорий, которой мы должны располагать, а она выводится с учетом развертки трубы.
  • При определении рационально оправданного сечения профиля, которое могло бы обеспечить максимальную проводимость водопроводной или отопительной сети.

Определение параметров трубы

Площадь сечения

Труба представляет собой цилиндр, поэтому производить расчеты не сложно

Сечение круглого профиля – это круг, диаметр которого определяется, как разница величины наружного диаметра изделия за вычетом толщины стенок.

В геометрии площадь круга рассчитывается так:

S = π R^2 или S= π (D/2-N)^2, где S – площадь внутреннего сечения; π – число «пи»; R – радиус сечения; D - наружный диаметр; N - толщина стенок трубы.

Обратите внимание! Если в напорных системах жидкость заполняет весь объем трубопровода, то в самотечной канализации постоянно смачивается только часть стенок. В таких коллекторах применяется понятие площади живого сечения трубы.

Внешняя поверхность

Поверхность цилиндра, которым и является круглый профиль, представляет собой прямоугольник. Одна сторона фигуры – длина отрезка трубопровода, а вторая – величина окружности цилиндра.

Расчет развертки трубы осуществляется по формуле:

S = π D L, где S – площадь трубы, L – длина изделия.

Внутренняя поверхность

Такой показатель применяется в процессе гидродинамических расчетов, когда определяется площадь поверхности трубы, которая постоянно контактирует с водой.

При определении данного параметра следует учитывать:

  1. Чем больше диаметр водопроводных труб, тем меньше скорость проходящего потока зависит от шероховатости стенок конструкции.

На заметку! Если трубопроводы с большим диаметром характеризуются малой протяженностью, то величиной сопротивления стенок можно пренебречь.

  1. При гидродинамических расчетах шероховатости поверхности стенок придается не меньшее значение, чем ее площади. Если вода проходит по ржавому внутри водопроводу, то ее скорость меньше скорости жидкости, которая протекает по сравнительно гладкой полипропиленовой конструкции.
  1. Сети, которые монтируются из не оцинкованной стали, отличаются непостоянной площадью внутренней поверхности. При эксплуатации они покрываются ржавчиной и зарастают минеральными отложениями, из-за чего сужается просвет трубопровода.

Важно! Обратите внимание на этот факт, если захотите сделать холодное водоснабжение из стального материала. Проходимость такого водопровода сократится в два раза уже после десяти лет эксплуатации.

Расчет развертки трубы в данном случае делается с учетом того, что внутренний диаметр цилиндра определяется, как разность внешнего диаметра профиля и увеличенной вдвое толщины его стенок.

В результате площадь поверхности цилиндра определяется по формуле:

S= π (D-2N)L, где к уже известным параметрам добавляется показатель N, определяющий толщину стенок.

Формула развертки заготовки помогает рассчитать количество необходимой теплоизоляции

Чтобы знать, как посчитать развертку трубы, достаточно вспомнить курс геометрии, которую осваивают в средних классах. Приятно, что школьная программа находит применение во взрослой жизни и помогает решать серьезные задачи, связанные со строительством. Пусть они окажутся полезными и для вас!

§ 26. Общие сведения

Гибка - способ обработки металла давлением, при котором заготовке или ее части придается изогнутая форма. Слесарная гибка выполняется молотками (лучше с мягкими бойками) в тисках, на плите или с помощью специальных приспособлений. Тонкий листовой металл гнут киянками, изделия из проволоки диаметром до 3 мм - плоскогубцами или круглогубцами. Гибке подвергают только пластичный материал.

Гибка деталей - одна из наиболее распространенных слесарных операций. Изготовление деталей гибкой возможно как вручную на опорном инструменте и оправках, так и на гибочных машинах (прессах).

Сущность гибки заключается в том, что одна часть заготовки перегибается по отношению к другой на заданный угол. Происходит это следующим образом: на заготовку, свободно лежащую на двух опорах, действует изгибающая сила, которая вызывает в заготовке изгибающие напряжения, и если эти напряжения не превышают предел упругости материала, деформация, получаемая заготовкой, является упругой, и по снятии нагрузки заготовка принимает первоначальный вид (выпрямляется).

Однако при гибке необходимо добиться, чтобы заготовка после снятия нагрузки сохранила приданную ей форму, поэтому напряжения изгиба должны превышать предел упругости и деформация заготовки в этом случае будет пластической, при этом внутренние слои заготовки подвергаются сжатию и укорачиваются, наружные слои подвергаются растяжению и длина их увеличивается. В то же время средний слой заготовки - нейтральная линия - не испытывает ни сжатия, ни растяжения и длина его до и после изгиба остается постоянной (рис. 93,а). Поэтому определение размеров заготовок профилей сводится к подсчету длины прямых участков (полок), длины укорачивания заготовки в пределах закругления или длины нейтральной линии в пределах закругления.

При гибке деталей под прямым углом без закруглений с внутренней стороны припуск на загиб берется от 0,5 до 0,8 толщины материала. Складывая длину внутренних сторон угольника или скобы, получаем длину заготовки детали.

Пример 1 . На рис. 93, в, г показаны угольник и скоба с прямыми внутренними углами.

Размеры угольника (рис. 93, в): а = 30 мм, b = 70 мм, t = 6 мм. Длина развертки

L = а + b + 0,5t = 30 + 70 + 3 = 103 мм.

Размеры скобы (рис. 93, г): а = 70 мм, b = 80 мм, с = 60 мм, t = 4 мм. Длина развертки заготовки скобы

L = 70 + 80 + 60 + 2 = 212 мм.

Разбиваем угольник по чертежу на участки. Подставляем их размеры а = 50 мм, b = 30 мм, t = 6 мм, r = 4 мм в формулу

L = а + b + π/2(r + t/2)

Тогда получим:

L = 50 + 30 + 3,14/2(4 + 6/2) = 50 + 30 + 1,57⋅7 = 90,99 91 мм.

Разбиваем скобу на участки, как показано на чертеже. Их размеры: а = 80 мм, h = 65 мм, с = 120 мм, t = 5 мм, r = 2,5 мм.

L = а + h + с + π(r + t/2) = 80 + 65 + 120 + 3,14(2,5 + 5/2),

следовательно,

L = 265 4 + 15,75 = 280,75 мм.

Сгибая в окружность эту полосу, получим цилиндрическое кольцо, причем внешняя часть металла несколько вытянется, а внутренняя сожмется. Следовательно, длине заготовки будет соответствовать длина средней линии окружности, проходящая по середине между внешней и внутренней окружностями кольца.

Длина заготовки

Зная диаметр средней окружности кольца и подставляя его числовое значение в формулу, находим длину заготовки:

L = πD = 3,14 108 = 339,12 мм.

В результате предварительных расчетов можно изготовить деталь установленных размеров.

В процессе гибки в металле возникают значительные напряжения и деформации. Они особенно ощутимы, когда радиус гибки мал. Чтобы не появились при этом трещины в наружных слоях, радиус гибки не должен быть меньше минимально допустимого радиуса, который выбирается в зависимости от толщины и рода изгибаемого материала (рис. 95).

Как я и обещал в комментариях к статье , сегодня поговорим о расчете длины развертки детали, согнутой из листового металла. Конечно, процессу гибки подвергают не только детали из листов. Гнут детали круглого и...

Квадратного сечений, гнут и все прокатные профили – уголки, швеллеры, двутавры, трубы. Однако холодная гибка деталей из листового металлопроката, безусловно, является наиболее распространенной.

Для обеспечения минимальных радиусов, детали перед гибкой иногда нагревают. При этом повышается пластичность материала. Используя гибку с калибрующим ударом, добиваются того, что внутренний радиус детали становится абсолютно равным радиусу пуансона. При свободной V-образной гибке на листогибе внутренний радиус получается на практике больше радиуса пуансона. Чем более у материала детали ярко выражены пружинные свойства, тем более отличаются друг от друга внутренний радиус детали и радиус пуансона.

На рисунке, представленном ниже, изображен согнутый из листа толщиной s и шириной b уголок. Необходимо найти длину развертки.

Расчет развертки выполним в программе MS Excel.

В чертеже детали заданы: величина внутреннего радиуса R , угол a и длина прямолинейных участков L1 и L2 . Вроде все просто – элементарная геометрия и арифметика. В процессе изгиба заготовки происходит пластическая деформация материала. Наружные (относительно пуансона) волокна металла растягиваются, а внутренние сжимаются. В середине сечения – нейтральная поверхность…

Но вся проблема в том, что нейтральный слой располагается не в середине сечения металла! Для справки: нейтральный слой – поверхность расположения условных волокон металла, не растягивающихся и не сжимающихся при изгибе. Более того – эта поверхность (вроде как) не является поверхностью кругового цилиндра. Некоторые источники предполагают, что это параболический цилиндр…

Я более склонен доверять классическим теориям. Для сечения прямоугольной формы по классическому сопромату нейтральный слой располагается на поверхности кругового цилиндра с радиусом r .

r = s / ln (1+ s / R )

На базе этой формулы и создана программа расчета развертки листовых деталей из сталей марок Ст3 и 10…20 в Excel.

В ячейках со светло-зеленой и бирюзовой заливкой пишем исходные данные. В ячейке со светло-желтой заливкой считываем результат расчета.

1. Записываем толщину листовой заготовки s в миллиметрах

в ячейку D 3 : 5,0

2. Длину первого прямого участка L 1 в миллиметрах вводим

в ячейку D 4 : 40,0

3. Внутренний радиус сгиба первого участка R 1 в миллиметрах записываем

в ячейку D 5 : 5,0

4. Угол сгиба первого участка a 1 в градусах пишем

в ячейку D 6 : 90,0

5. Длину второго прямого участка детали L 2 в миллиметрах вводим

в ячейку D 7 : 40,0

6. Все, результат расчета — длина развертки детали L в миллиметрах

в ячейке D 17 : =D4+ЕСЛИ(D5=0;0;ПИ()/180*D6*D3/LN ((D5+D3)/D5))+ +D7+ЕСЛИ(D8=0;0;ПИ()/180*D9*D3/LN ((D8+D3)/D8))+D10+ +ЕСЛИ(D11=0;0;ПИ()/180*D12*D3/LN ((D11+D3)/D11))+D13+ +ЕСЛИ(D14=0;0;ПИ()/180*D15*D3/LN ((D14+D3)/D14))+D16 =91.33

L = ∑ (Li +3.14/180* ai * s / ln ((Ri + s )/ Ri )+ L (i +1) )

Используя предложенную программу, можно рассчитать длину развертки для деталей с одним сгибом – уголков, с двумя сгибами – швеллеров и Z-профилей, с тремя и четырьмя сгибами. Если необходимо выполнить расчет развертки детали с большим числом сгибов, то программу очень легко доработать, расширив возможности.

Важным преимуществом предложенной программы (в отличие от многих аналогичных) является возможность задания на каждом шаге различных углов и радиусов гибки .

А «правильные» ли результаты выдает программа? Давайте, сравним полученный результат с результатами расчетов по методике изложенной в «Справочнике конструктора-машиностроителя» В.И. Анурьева и в «Справочнике конструктора штампов» Л.И. Рудмана. Причем в расчет возьмем только криволинейный участок, так как прямолинейные участки все, надеюсь, считают одинаково.

Проверим рассмотренный выше пример.

«По программе» : 11,33 мм – 100,0%

«По Анурьеву» : 10,60 мм – 93,6%

«По Рудману» : 11,20 мм – 98,9%

Увеличим в нашем примере радиус гибки R 1 в два раза — до 10 мм. Еще раз произведем расчет по трем методикам.

«По программе» : 19,37 мм – 100,0%

«По Анурьеву» : 18,65 мм – 96,3%

«По Рудману» : 19,30 мм – 99,6%

Таким образом, предложенная методика расчетов выдает результаты на 0,4%…1,1% больше, чем «по Рудману» и на 6.4%…3,7% больше, чем «по Анурьеву». Понятно, что погрешность существенно уменьшится, когда мы добавим прямолинейные участки.

«По программе» : 99,37 мм – 100,0%

«По Анурьеву» : 98,65 мм – 99,3%

«По Рудману» : 99,30 мм – 99,9%

Возможно Рудман составлял свои таблицы по этой же формуле, которую использую я, но с погрешностью логарифмической линейки… Конечно, сегодня «на дворе» двадцать первый век, и рыскать по таблицам как-то не с руки!

В заключение добавлю «ложку дегтя». Длина развертки — это очень важный и «тонкий» момент! Если конструктор гнутой детали (особенно высокоточной (0,1 мм)) надеется расчетом точно и с первого раза определить ее, то он зря надеется. На практике в процесс гибки вмешается масса факторов – направление проката, допуск на толщину металла, утонение сечения в месте изгиба, «трапециевидность сечения», температура материала и оснастки, наличие или отсутствие смазки в зоне гибки, настроение гибщика… Короче, если партия деталей большая и дорого стоит – уточните практическими опытами длину развертки на нескольких образцах . И только после получения годной детали рубите заготовки на всю партию. А для изготовления заготовок для этих образцов, точности, которую обеспечивает программа расчета развертки, хватит с лихвой!

Программы расчета «по Анурьеву» и «по Рудману» в Excel можете найти в Сети.

Жду ваших комментариев, коллеги.

Для ОСТАЛЬНЫХ — можно скачать просто так...

Продолжение темы — в статье о .

О расчете развертки при гибке труб и прутков читайте .

heatylab.com

Определение длины развертки при гибке. Схема расчета длины развертки.

Раздел: БИБЛИОТЕКА ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ Короткий путь http://bibt.ru

Адрес этой страницы

Предыдущая Оглавление книги Следующая

Длину развертки определяют, полагая что длины прямых участков детали при гибке остаются неизменными, а у изогнутых участков находят длину нейтрального слоя (см. гл. I).

Радиус нейтрального слоя (рис. 47, а) R=r + Sx, (97)

где r — внутренний радиус гибки в мм; S — толщина материала в мм; х — величина, зависящая от отношения r/S (табл. 36).

Рис. 47. Схема расчета длины развертки: а — расположение нейтральной линии гибки; б — разделение развертки на участке для расчета

Длина развертки (в мм) изгибаемой детали (рис. 47, б) равна

где ∑l — сумма прямых участков в мм; α — угол гибки в град; R — расчетный радиус нейтрального слоя, определяемый по формуле (97).

При завивке шарниров (петель) под действием внешних сил трения, препятствующих деформированию, коэффициент х приобретает значения, приведенные в табл. 37.

35. Рекомендуемые значения удельного усилия калибровки

36. Значения величины х

37. Значения величины х при завивке шарнира

Если в чертеже гнутой детали задано одностороннее расположение поля допуска (рис. 48, а), то для определения длины развертки расчет ведут по серединам полей допусков (рис. 48, б).

Рис. 48. Схема назначения технологических размеров и допусков на изгибаемые детали

Размеры разверток гнутых деталей, рассчитанные по формуле (98), следует уточнять в тех случаях, когда за один ход образуется несколько углов, причем характер деформации существенно отличается от чистого изгиба, что наблюдается при гибке деталей, показанных на рис. 49, а, б, в, а также в случае гибки ушков, петель и т. п. (рис. 49, г).

В табл. 38 приведены вспомогательные формулы для расчета длины развертки гнутых деталей при различных способах задания размеров на чертеже гнутой детали и различных формах сопряжений.

Рис. 49. Примеры необходимой опытной отработки длины развертки

38. Вспомогательные формулы для расчета развертки

Исходные данные Эскиз Формулы для расчета длины развертки в мм
Размеры от центра закругления изогнутого профиля
Размеры от точки пересечения продолжения линий наружного контура
Размеры от касательных к наружному контуру X

Примечание. Значение x определяют по табл. 36.

Перейти вверх к навигации

delta-grup.ru

8.3 Определение размеров и построение развертки детали

При гибке необходимо добиться, чтобы заготовка после снятия нагрузки сохранила приданную ей форму, поэтому напряжения изгиба должны превышать предел упругости.

Деформация заготовки в данном случае будет пластической, при этом внутренние слои заготовки сжимаются и укорачиваются, а наружные растягиваются и удлиняются (рисунок 8.3.1).

Рисунок 8.3.1 Схема процесса гибки

В то же время средний слой заготовок - нейтральная линия - не испытывает ни сжатия, ни растяжения; её длина до и после изгиба остается постоянной.

Поэтому определение размеров заготовок профилей сводится к подсчету длины прямых участков (полок), длины укорачивания заготовки в пределах закругления или длины нейтральной линии в пределах закругления.

При гибке деталей под прямым углом без закруглений с внутренней стороны припуск на загиб берется от 0,5 до 0,8 толщины материала. Складывая длину внутренних сторон угольника или скобы, получаем длину развертки заготовки детали.

Таблица 8.3.1 Определение размеров заготовки при гибке с закруглением (по радиусу)

 Тип гибки  Эскиз  Длина заготовки, в мм
 Одноугловая    L=l1+l2+ln= l1+l2+π(r+xS)/2
 Двухугловая    L=l1+l2+l3+ π(r+xS)= =l1+l2+l3+2lH

 Четырехугловая (за две операции)

   L=l1+2l2+l3+ l4+2lh2+2lh3= =l1+2l2+l3+l4+π(r1+x1S)+ +π(r2+x2S)
 Полукруглая (U-образная)    L=2l+2lH=2l+ π(r+xS)
 Торцовая (закатка)    

L=1,5πρ+2R - S ;

ρ= R - yS

Примечания:

  1. Длина нейтрального слоя угловых закруглений lн

Пример 1. На рисунке 8.3.2, а, б показаны соответственно угольник и скоба с прямыми внутренними углами.

Рисунок 8.3.2 Примеры расчета длины заготовки 

Размеры угольника: а = 30мм; L = 70мм; t = 6 мм.

Длина развертки заготовки l =а + L + 0,5t = 30 + 70+3 = 103 мм.

Размеры скобы: a = 70мм; b = 80мм; c = 60мм; t = 4 мм.

Длина развертки заготовки l =а + b + c + 0,5t = 70 + 80 + 60 + 2 = 212мм.

Пример 2. Подсчитать длину развёртки заготовки угольника с внутренним закруглением.        

Разбиваем угольник по чертежу на участки. Подставив их числовые значения

(a = 50 мм; b = 30 мм: t = 6 мм; r = 4 мм) в формулу

L = а + b + (r + t/2)π/2,

получим L = 50+ 30+ (4 + 6/2)π/2 =50 + 30 + 7* 1,57 = 91 мм.

Пример 3. Подсчитать длину развертки заготовки скобы с закруглением.

Разбиваем скобу на участки, как показано на чертеже.

Подставив их числовые значения (а = 80мм; h = 65мм; с = 120мм; t = 5мм; r = 2,5мм) в формулу

L=а + h+с+ π(r+t/2),

получим L=80 + 65 + 120+3,14(2,5 +5/2) = 265 + 15,75 = 280,75 мм.

Пример 4. Подсчитать длину развертки заготовки из стальной полосы толщиной 4 мм и шириной 12 мм для замкнутого кольца с наружным диаметром 120 мм.

Сгибая в окружность эту полосу, получим цилиндрическое кольцо, причем внешняя часть металла несколько вытянется, а внутренняя сожмется.

Следовательно, длине заготовки будет соответствовать длина средней линии окружности, проходящая посередине между внешней и внутренней окружностями кольца.

Длина заготовки L = πD. Зная диаметр средней окружности кольца и подставляя его числовое значение в формулу, находим длину заготовки: L = 3,14 * 108 = = 339,12 мм.

В результате предварительных расчетов можно изготовить деталь установленных размеров.

Page 2

При работе с металлом очень часто приходится выполнять еще одну операцию, связанную с его пластическим деформированием, - гибку. Ни одна работа, пожалуй, без нее не обходится. При сгибании металла его волокна испытывают одновременно и сжатие и растяжение, нужно внимательно выбирать усилия и радиусы загибов, чтобы пластическая деформация не перешла в деформацию разрыва.

Не следует, например, выбирать радиус загиба меньше, чем толщина заготовки, - это может привести к тому, что на металле появятся трещины или он сомнется на внутренней стороне загиба.

Не стоит вручную гнуть заготовки из стального прутка диаметром больше 10 мм. Полосовую сталь для такой операции лучше выбрать толщиной до 7 мм, а стальные листы - до 5 мм.

Известно, что листовой металл легче гнуть, если его предварительно подогреть. А что делать, если такой возможности нет? Можно обойтись и без подогрева. На внешнюю поверхность в зоне сгиба нужно нанести поперечные риски - лист согнется значительно легче.

Гнуть, как показывает практика, чаще всего приходится либо полосовую сталь, либо трубы. Приемы работы с этими двумя видами металла существенно различаются.

Page 3

Гибку прямоугольной скобы из полосовой стали выполняют в следующем порядке:

Рисунок 8.4.1.1 Гибка прямоугольной скобы: в - чертеж для определения длины скобы, б, в - гибка одного и другого конца скобы, г - формирование скобы; 1 - заго­товка, 2 - уголъники-нагубники, 3, 5 - концы скобы, 4, 9 - угольники, 6, 8 - большой и малый бруски-оправки, 7 - лапки (Макиенко Н.И. Общий курс слесарного дела М.: Высш. шк. , 1989.)

  1. определяют длину развертки заготовки, складывая длину сторон скобы с припуском на один изгиб, равным 0,5 толщины полосы, т.е. L = 17,5 + 1 + 15 + 1 + 20 + 1 + 15 + 1 + 17,5 = 89 мм;
  2. отмечают длину с дополнительным припуском на обработку торцов по 1 мм на сторону и зубилом отрубают заготовку;
  3. выправляют вырубленную заготовку на плиге;
  4. опиливают в размер по чертежу;
  5. наносят риски загиба;
  6. зажимают заготовку 1 (б) в тисках между угольниками-нагубниками 2 на уровне риски и ударами молотком загибают конец 3 скобы (первый загиб);
  7. переставляют заготовку в тисках, зажимая ее между угольником 4 и бруском-оправкой, более длинным, чем конец скобы;
  8. загибают второй конец 5, осуществляя второй загиб;
  9. снимают заготовку и вынимают брусок-оправку 6;
  10. размечают длину лапок на загнутых концах;
  11. надевают на тиски второй угольник 9 и, вложив внутрь скобы тот же брусок-оправку 6, но в другом его положении, зажима­ют скобу в тисках иа уровне рисок;
  12. отгибают первую и вторую лапки 7, делают четвертый и пятый заги­бы первой и второй лапок;
  13. проверяют и выправляют по угольнику четвертый и пятый загибы;
  14. снимают заусенцы на ребрах скобы л опиливают концы лапок в размер.

Гибка двойного угольника в тисках (рисунок 8.4.1.2) производится после разметки, вырубки заготовки, правки на плите и опиливания по ширине в заданный размер.

Подготовленную таким образом заготовку зажимают -в тисках 3 между угольниками- нагубниками 2 и загибают первую полку угольника, а затем заменяют один нагубник бруском-подкладкой и загибают вторую полку угольника.

По окончании гибки концы уголь­ника опиливают Напильником в размер и снимают заусенцы с острых ребер.

Рисунок 8.4.1.2 Гибка двойного угольника (Макиенко Н.И. Общий курс слесарного дела М.: Высш. шк. , 1989.)

Гибка хомутика (рисунок 8.4.1.3). После расчета длины заготовки и ее разметки в местах изгиба зажимают в тисках оправку 1 в вертикальном положении.

Рисунок 8.4.1.3 Гибка хомутика:а - изгибание плоскогубцами на оправке, б, в - формование; 1 - оправка, 2 - хомутик, 3 - плоскогубцы, 4 - нагубники, 5 - мягкая подкладка (Макиенко Н.И. Общий курс слесарного дела М.: Высш. шк. , 1989.)

Гибка ушка круглогубцами. Ушко со стержнем из тонкой проволо­ки изготовляют с помощью круглогубцев. Длина заготовки должна быть на 10...15 мм больше, чем требуется по чертежу. Удерживая заготовку за один конец, второй изгибают, постепенно переставляя круглогубцы в местах изгиба. После того как ушко будет загнуто в соответствии с за­данными размерами, ему придают нужную форму с помощью плоскогуб­цев. После этого лишний конец стержня удаляют кусачками.

Гибка втулки. Последовательность переходов при гибке цилиндри­ческой втулки описана ниже.

Допустим, требуется из полосовой стали на круглых оправках изогнуть цилиндрическую втулку.

Сначала определяют длину заготовки.

Если наружный диаметр втулки равен 20 мм, а внутренний - 16 мм, то средний диаметр будет равен 18 мм.

Тогда общую длину заго­товки определяют по формуле L = 3,14 * 18 = 56,5 мм.

Затем заготовку с оправкой зажимают в тисках так, чтобы изгиба­емая часть была выше уровня губок тисков, и через мягкие прокладки наносят по выступавшей части удары молотком, загибая конец полосы на оправке так, чтобы полоса плотно прилегала к ее поверхности.

Затем заготовку с оправкой переставляют обратной сторо­ной и ударами молотком загибают второй конец по оправке до плотного прилегания к оправке обеих плоскостей в стыке. После освобождения заготовки качество гибки проверяют измеритель­ной линейкой.

Рисунок 8.4.1.4 Гибка втулки в круглых оправках: а - чертеж втулки, б...г - последовательность опера­ций гибки (Макиенко Н.И. Общий курс слесарного дела М.: Высш. шк. , 1989.)

Диаметр оправки должен быть равным диаметру отверстия хомутика 2. С помощью двух плоскогубцев 3 по разметочным рискам изгибают хомутик по оправке (работают вдвоем - один держит плоско­губцы, а второй наносит удары). Окончательное формирование хомути­ка выполняют по той же оправке металлическим молотком, а затем на правильной плите.

Во избежание вмятин и забоин от ударов между молотком и деталью прокладывают кусок железной полосы.

Page 4

Трубы изгибают по дуге различного радиуса или другой кривой под различными углами и в различных плоскостях. Гнутые трубы широ­ко применяют для изготовления бензиновых, масляных, воздушных трубопроводов в автомобилях, тракторах, самолетах, металлорежущих станках и других машинах.

Рисунок 8.4.2.1 Виды изгиба трубы

Трубы гнут ручным и механизированным способами, в горячем и холодном состоянии, с наполнителями и без них. Способ гибки зависит от диаметра и материала трубы, значения угла изгиба.

Гибка труб в горячем состоянии применяется при диаметре более 100 мм. При горячей гибке с наполнителем трубу отжигают, размечают, а затем один конец закрывают деревянной, или металлической пробкой.

Рисунок 8.4.2.2 Гибка трубы (Макиенко Н.И. Общий курс слесарного дела М.: Высш. шк. , 1989.)

Для предупреждения смятия, выпучивания и появления трещин при гибке трубу наполняют мелким сухим песком, просеянным через сито с ячейками около 2 мм, так как наличие в песке крупных камешков может привести к продавливанию стенки трубы, а слишком мелкий песок для гибки труб непригоден, так как при высокой температуре спекается и пригорает к стенкам трубы.

Для механизации наполнения (набивки) труб песком применяют мо­лотковые или вибрационные установки. Если установок нет, трубу на­полняют песком через воронку, а уплотняют песок, обстукивая трубу молотком; удары наносят снизу вверх, одновременно поворачивая трубу до тех пор, пока при ударе не будет слышен глухой звук.

После заполнения песком второй конец трубы забивают деревянной пробкой, у которой должны быть отверстия или канавки для выхода газов, образующихся при нагреве (рисунок 8.4.2.2, а).

Диаметры пробок (заглушек) зависят от внутреннего диаметра тру­бы. Для труб малых диаметров заглушки делают из глины, резины или твердой древесины; выполняют их в виде конусной пробки длиной, равной 1,5...2 диаметрам трубы, с конусностью 1:10. Для труб боль­ших диаметров заглушки изготов­ляют из металла. Желательно, чтобы забиваемые в концы труб пробки несколько выступали из них, что облегчает удаление пробок.

Для каждой трубы в зависимо­сти от ее диаметра и материала дол­жен быть установлен минимально допустимый радиус гибки. При гибке труб этот радиус должен быть не меньше трех диаметров трубы, а длина нагреваемой части зависит от угла изгиба и диаметра трубы. Если трубу изгибают под углом 90°, то нагревают участок, равный шести диаметрам трубы, ес­ли под углом 60°, - равный четы­рем диаметрам, если под углом 45°, - трем диаметрам и т. д.

Длина L (мм) нагреваемого участка трубы определяется по формуле L = α d / 15; где α угол изгиба трубы, град; d - наружный диа­метр трубы, мм; 15 - постоянный коэффициент (90:6=15; 60:4 = 15; 45:3 = 15).

Участок изгиба на трубе размечают мелом. Выполняется эта опера­ция по заранее заготовленным шаблонам. В процессе гибки, трубу прове­ряют по месту или по изготовленному из проволоки шаблону.

При гибке труб в горячем состоянии работают в рукавицах. Трубы нагревают паяльными лампами в горнах или пламенем газовых горелок до вишнево-красного цвета. Топливом в горнах может быть древесный уголь или дрова. Лучшим топливом является древесный уголь, который не содержит вредных примесей и дает более равномерный нагрев.

В случае перегрева трубу до гибки охлаждают до вишнево-красного цвета. Трубы рекомендуется гнуть с одного нагрева, так как повторный нагрев ухудшает качество металла.

При нагреве обращают особое внимание на прогрев песка. Нельзя допускать излишнего перегрева отдельных участков; в случае перегрева трубу охлаждают. От достаточно нагретой части трубы отскакивает окалина.

По окончании гибки выколачивают или выжигают пробки и высы­пают песок. Плохое, неплотное заполнение трубы, недостаточный или неравномерный прогрев перед гибкой приводят к образованию складок или разрыву. Изгиб проверяют шаблоном.

Page 5

8.5 Работа на гибочных станках

Гибка - весьма трудоемкая и сложная операция, поэтому предпринимаются попытки ее механизировать. Для механизации работ при гибке используют различные гибочные машины. Рассмотрим подробнее конструкции некоторых из них.

www.e-ope.ee

Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.

Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра. 4.33/5 (86.67%) проголосовало 6

Развертка прямого кругового цилиндра.

Цилиндр диаметром D и высотой H показан на рис. 1. Развертка представляет собой прямоугольник длиной с = πD и высотой Н.

Прямой круговой цилиндр, усеченный плоскостью, параллельной его оси, показан на рис. 2. Развертка представляет собой прямоугольник высотой Н и длиной L = b + k, где b = πDᵠ/360° и k = 2 √((D/2)2 – a2) = 2a tg (ᵠ/2).

Рис. 1.

Рис. 2.

Развертка прямого кругового цилиндра из ленты. Расчет развертки цилиндра.

Рис. 3.

Цилиндр показан на рис. 3. При определении развертки можно использовать следующие зависимости:

где

D — диаметр цилиндра;

t — шаг винтовой линии;

n — число полных витков на общей длине цилиндра H, Н = nt;

b — ширина ленты;

L — общая длина ленты;

I — длина скоса.

Развертка усеченного цилиндра.

Цилиндр показан на рис. 4.

Рис. 4.

Для получения развертки горизонтальная проекция цилиндра делится на равные части и точки деления нумеруются (в данном случае от 0 до 12). Из точек деления проводятся вертикали до пересечения верхнего основания в точках 0′1, 1′1…, 6′1. На продолжении прямой 0’6′ откладывается отрезок длиной с = πD, который делится на принятое число равных частей. Из точек деления 00, 10, …, 60 строятся перпендикуляры до их пересечения с соответствующими горизонтальными линиями в точках 001, 101, …, 601. Полученные точки соединяются плавной кривой. Ввиду симметричности остальные точки кривой находит аналогичным путем.

Линию развертки можно определить и таким способом. На расстоянии h2 = (h + H)/2 от линии 00120 проводится параллельная прямая. Из центра S, лежащего на прямой, описывается полуокружность радиусом А. Полуокружность делится на равные части, число которых равно половине точек деления развертки (в данном случае на шесть). Через точки деления 0ꞋꞋ, 1ꞋꞋ, …, 6ꞋꞋ проводятся горизонтальные прямые до пересечения вертикалей, проходящих через 00, 10, … , 120. Полученные точки 001, 101, …, 1201 соединяются плавной кривой.

Верхнее основание цилиндра представляет собой эллипс с полуосями a = D/2 cos α = 0′13′1 и b = D/2.

Рис. 5.

При аналитическом определении координат точек кривой развертки цилиндра, усеченного плоскостью под углом α (рис. 5), могут быть использованы следующие зависимости:

xk = kx1 = πD/2  kε/180°;     yk = D/2 tg α sin kε = A sin kε = A sin ᵠi,

где х1 = πD/ (2n) = πD/2  ε/180° — длина дуги окружности основания цилиндра, разделенная на 2n равных частей; ε = 360°/2n — центральный угол, соответствующий одному делению; k — порядковый номер точки; A = (H — h)/2 = (D/2) tg α — амплитуда синусоиды; ᵠi= kε.

Значения sin kε для наиболее часто употребляемых значений 2n приведены в табл. 1.

Таблица 1. Значения sin kε и sin2 kε

2n sin kε sin2 kε 2n sin kε sin2 kε
8 16 32 64 12 24 48 96
1 0,09802 0,00961 1 0,06540 0,00428
1 2 0,19509 0,03806 1 2 0,13053 0,01704
3 0,29028 0,08426 3 0,19509 0,03806
1 2 4 0,38268 0,14645 1 2 4 0,25882 0,06699
5 0,47139 0,22221 5 0,32144 0,10332
3 6 0,55557 0,30866 3 6 0,38268 0,14645
7 0,63439 0,40245 7 0,44229 0,19562
1 2 4 8 0,70711 0,50000 1 2 4 8 0,50000 0,25000
9 0,77301 0,59754 9 0,55557 0,30866
5 10 0,83147 0,69134 5 10 0,60876 0,37059
11 0,88192 0,77778 11 0,65935 0,43474
3 6 12 0,92388 0,85355 3 6 12 0,70711 0,50000
13 0,95694 0,91573 13 0,75184 0,56526
7 14 0,98079 0,96194 7 14 0,79335 0,62941
15 0,99518 0,99039 15 0,83147 0,69134
2 4 8 16 1,00000 1,00000 2 4 8 16 0,86617 0,75000
17 0,89687 0,80438
9 18 0,92388 0,85355
19 0,94693 0,89668
5 10 20 0,96600 0,93301
21 0,98079 0,96194
11 22 0,99144 0,98296
23 0,99786 0,99572
3 6 12 24 1,00000 1,00000

Примечание: Значения sin kε и sin2 kε даны для одной четверти окружности. В остальных четвертях они повторяются.

Ввиду симметричности синусоиды достаточно определить координаты точек одной четверти окружности, например от у0 до у3. Остальные координаты имеют соответственно равные значения. Например: у4 — у2, …, у11 = — у1 и т. д.

mechanicinfo.ru

Расчет длины развертки

Опубликовано 09 Июн 2013Рубрика: Механика | 69 комментариев

Как я и обещал в комментариях к статье «Расчет усилия листогиба», сегодня поговорим о расчете длины развертки детали, согнутой из листового металла. Конечно, процессу гибки подвергают не только детали из листов. Гнут детали круглого и...

...квадратного сечений, гнут и все прокатные профили – уголки, швеллеры, двутавры, трубы. Однако холодная гибка деталей из листового металлопроката, безусловно, является наиболее распространенной.

Для обеспечения минимальных радиусов, детали перед гибкой иногда нагревают. При этом повышается пластичность материала. Используя гибку с калибрующим ударом, добиваются того, что внутренний радиус детали становится абсолютно равным радиусу пуансона. При свободной V-образной гибке на листогибе внутренний радиус получается на практике больше радиуса пуансона. Чем более у материала детали ярко выражены пружинные свойства, тем более отличаются друг от друга внутренний радиус детали и радиус пуансона.

На рисунке, представленном ниже, изображен согнутый из листа толщиной s и шириной b уголок. Необходимо найти длину развертки.

Расчет развертки выполним в программе MS Excel.

В чертеже детали заданы: величина внутреннего радиуса R, угол a и длина прямолинейных участков L1 и L2. Вроде все просто – элементарная геометрия и арифметика. В процессе изгиба заготовки происходит пластическая деформация материала. Наружные (относительно пуансона) волокна металла растягиваются, а внутренние сжимаются. В середине сечения – нейтральная поверхность…

Но вся проблема в том, что нейтральный слой располагается не в середине сечения металла! Для справки: нейтральный слой – поверхность расположения условных волокон металла, не растягивающихся и не сжимающихся при изгибе. Более того – эта поверхность (вроде как) не является  поверхностью кругового цилиндра. Некоторые источники предполагают, что это параболический цилиндр…

Я более склонен доверять классическим теориям. Для сечения прямоугольной формы по классическому сопромату нейтральный слой располагается на поверхности кругового цилиндра с радиусом r.

r = s/ln(1+s/R)

На базе этой формулы и создана программа расчета развертки листовых деталей из сталей марок  Ст3 и 10…20 в Excel.

В ячейках со светло-зеленой и бирюзовой заливкой пишем исходные данные. В ячейке со светло-желтой заливкой считываем результат расчета.

1. Записываем толщину листовой заготовки s в миллиметрах

в ячейку D3: 5,0

2. Длину первого прямого участка L1 в миллиметрах вводим

в ячейку D4: 40,0

3. Внутренний радиус сгиба первого участка R1 в миллиметрах записываем

в ячейку D5: 5,0

4. Угол сгиба первого участка a1 в градусах пишем

в ячейку D6: 90,0

5. Длину второго прямого участка детали L2 в миллиметрах вводим

в ячейку D7: 40,0

6. Все, результат расчета — длина развертки детали L в миллиметрах

в ячейке  D17: =D4+ЕСЛИ(D5=0;0;ПИ()/180*D6*D3/LN ((D5+D3)/D5))+ +D7+ЕСЛИ(D8=0;0;ПИ()/180*D9*D3/LN ((D8+D3)/D8))+D10+ +ЕСЛИ(D11=0;0;ПИ()/180*D12*D3/LN ((D11+D3)/D11))+D13+ +ЕСЛИ(D14=0;0;ПИ()/180*D15*D3/LN ((D14+D3)/D14))+D16=91.33

L = ∑(Li+3.14/180*ai*s/ln((Ri+s)/Ri)+L(i+1))

Используя предложенную программу, можно рассчитать длину развертки для деталей с одним сгибом – уголков, с двумя сгибами – швеллеров и Z-профилей, с тремя и четырьмя сгибами. Если необходимо выполнить расчет развертки детали с большим числом сгибов, то программу очень легко доработать, расширив возможности.

Важным преимуществом предложенной программы (в отличие от многих аналогичных) является возможность задания на каждом шаге различных углов и радиусов гибки.

А «правильные» ли результаты выдает программа? Давайте, сравним полученный результат с результатами расчетов по методике изложенной в «Справочнике конструктора-машиностроителя» В.И. Анурьева и в «Справочнике конструктора штампов» Л.И. Рудмана. Причем в расчет возьмем только криволинейный участок, так как прямолинейные участки все, надеюсь, считают одинаково.

Проверим рассмотренный выше пример.

«По программе»: 11,33 мм – 100,0%

«По Анурьеву»: 10,60 мм – 93,6%

«По Рудману»: 11,20 мм – 98,9%

Увеличим в нашем примере радиус гибки R1 в два раза — до 10 мм. Еще раз произведем расчет по трем методикам.

«По программе»: 19,37 мм – 100,0%

«По Анурьеву»: 18,65 мм – 96,3%

«По Рудману»: 19,30 мм – 99,6%

Таким образом, предложенная методика расчетов выдает результаты на 0,4%…1,1% больше, чем «по Рудману» и на 6.4%…3,7% больше, чем «по Анурьеву». Понятно, что погрешность существенно уменьшится, когда мы добавим прямолинейные участки.

«По программе»: 99,37 мм – 100,0%

«По Анурьеву»: 98,65 мм – 99,3%

«По Рудману»: 99,30 мм – 99,9%

Возможно Рудман составлял свои таблицы по этой же формуле, которую использую я, но с погрешностью логарифмической линейки… Конечно, сегодня «на дворе» двадцать первый век, и рыскать по таблицам как-то не с руки!

В заключение добавлю «ложку дегтя». Длина развертки — это очень важный и «тонкий» момент! Если конструктор гнутой детали (особенно высокоточной (0,1 мм)) надеется расчетом точно и с первого раза определить ее, то он зря надеется. На практике в процесс гибки вмешается масса факторов – направление проката, допуск на толщину металла, утонение сечения в месте изгиба, «трапециевидность сечения», температура материала и оснастки, наличие или отсутствие смазки в зоне гибки, настроение гибщика… Короче, если партия деталей большая и дорого стоит – уточните практическими опытами длину развертки на нескольких образцах. И только после получения годной детали рубите заготовки на всю партию. А для изготовления заготовок для этих образцов, точности, которую обеспечивает программа расчета развертки, хватит с лихвой!

Программы расчета «по Анурьеву» и «по Рудману» в Excel можете найти в Сети.

Жду ваших комментариев, коллеги.

Для УВАЖАЮЩИХ труд автора — скачать файл можно ПОСЛЕ ПОДПИСКИ НА АНОНСЫ СТАТЕЙ (подписная форма — чуть ниже и наверху страницы).

Для ОСТАЛЬНЫХ — можно скачать просто так... 

Ссылка на скачивание файла: raschet-dliny-razvertki (xls 36,5KB).

Продолжение темы — в статье о К-факторе.

О расчете развертки при гибке труб и прутков читайте здесь.

Другие статьи автора блога

На главную

al-vo.ru

Прога для расчета конусных деталей из жести. Формула длины развертки заготовки трубы: когда требуется и как рассчитывается

Как я и обещал в комментариях к статье , сегодня поговорим о расчете длины развертки детали, согнутой из листового металла. Конечно, процессу гибки подвергают не только детали из листов. Гнут детали круглого и...

Квадратного сечений, гнут и все прокатные профили – уголки, швеллеры, двутавры, трубы. Однако холодная гибка деталей из листового металлопроката, безусловно, является наиболее распространенной.

Для обеспечения минимальных радиусов, детали перед гибкой иногда нагревают. При этом повышается пластичность материала. Используя гибку с калибрующим ударом, добиваются того, что внутренний радиус детали становится абсолютно равным радиусу пуансона. При свободной V-образной гибке на листогибе внутренний радиус получается на практике больше радиуса пуансона. Чем более у материала детали ярко выражены пружинные свойства, тем более отличаются друг от друга внутренний радиус детали и радиус пуансона.

На рисунке, представленном ниже, изображен согнутый из листа толщиной s и шириной b уголок. Необходимо найти длину развертки.

Расчет развертки выполним в программе MS Excel.

В чертеже детали заданы: величина внутреннего радиуса R , угол a и длина прямолинейных участков L1 и L2 . Вроде все просто – элементарная геометрия и арифметика. В процессе изгиба заготовки происходит пластическая деформация материала. Наружные (относительно пуансона) волокна металла растягиваются, а внутренние сжимаются. В середине сечения – нейтральная поверхность…

Но вся проблема в том, что нейтральный слой располагается не в середине сечения металла! Для справки: нейтральный слой – поверхность расположения условных волокон металла, не растягивающихся и не сжимающихся при изгибе. Более того – эта поверхность (вроде как) не является поверхностью кругового цилиндра. Некоторые источники предполагают, что это параболический цилиндр…

Я более склонен доверять классическим теориям. Для сечения прямоугольной формы по классическому сопромату нейтральный слой располагается на поверхности кругового цилиндра с радиусом r .

r = s / ln (1+ s / R )

На базе этой формулы и создана программа расчета развертки листовых деталей из сталей марок Ст3 и 10…20 в Excel.

В ячейках со светло-зеленой и бирюзовой заливкой пишем исходные данные. В ячейке со светло-желтой заливкой считываем результат расчета.

1. Записываем толщину листовой заготовки s в миллиметрах

в ячейку D 3 : 5,0

2. Длину первого прямого участка L 1 в миллиметрах вводим

в ячейку D 4 : 40,0

3. Внутренний радиус сгиба первого участка R 1 в миллиметрах записываем

в ячейку D 5 : 5,0

4. Угол сгиба первого участка a 1 в градусах пишем

в ячейку D 6 : 90,0

5. Длину второго прямого участка детали L 2 в миллиметрах вводим

в ячейку D 7 : 40,0

6. Все, результат расчета — длина развертки детали L в миллиметрах

в ячейке D 17 : =D4+ЕСЛИ(D5=0;0;ПИ()/180*D6*D3/LN ((D5+D3)/D5))+ +D7+ЕСЛИ(D8=0;0;ПИ()/180*D9*D3/LN ((D8+D3)/D8))+D10+ +ЕСЛИ(D11=0;0;ПИ()/180*D12*D3/LN ((D11+D3)/D11))+D13+ +ЕСЛИ(D14=0;0;ПИ()/180*D15*D3/LN ((D14+D3)/D14))+D16 =91.33

L = ∑ (Li +3.14/180* ai * s / ln ((Ri + s )/ Ri )+ L (i +1) )

Используя предложенную программу, можно рассчитать длину развертки для деталей с одним сгибом – уголков, с двумя сгибами – швеллеров и Z-профилей, с тремя и четырьмя сгибами. Если необходимо выполнить расчет развертки детали с большим числом сгибов, то программу очень легко доработать, расширив возможности.

Важным преимуществом предложенной программы (в отличие от многих аналогичных) является возможность задания на каждом шаге различных углов и радиусов гибки .

А «правильные» ли результаты выдает программа? Давайте, сравним полученный результат с результатами расчетов по методике изложенной в «Справочнике конструктора-машиностроителя» В.И. Анурьева и в «Справочнике конструктора штампов» Л.И. Рудмана. Причем в расчет возьмем только криволинейный участок, так как прямолинейные участки все, надеюсь, считают одинаково.

Проверим рассмотренный выше пример.

«По программе» : 11,33 мм – 100,0%

«По Анурьеву» : 10,60 мм – 93,6%

«По Рудману» : 11,20 мм – 98,9%

Увеличим в нашем примере радиус гибки R 1 в два раза — до 10 мм. Еще раз произведем расчет по трем методикам.

«По программе» : 19,37 мм – 100,0%

«По Анурьеву» : 18,65 мм – 96,3%

«По Рудману» : 19,30 мм – 99,6%

Таким образом, предложенная методика расчетов выдает результаты на 0,4%…1,1% больше, чем «по Рудману» и на 6.4%…3,7% больше, чем «по Анурьеву». Понятно, что погрешность существенно уменьшится, когда мы добавим прямолинейные участки.

«По программе» : 99,37 мм – 100,0%

«По Анурьеву» : 98,65 мм – 99,3%

«По Рудману» : 99,30 мм – 99,9%

Возможно Рудман составлял свои таблицы по этой же формуле, которую использую я, но с погрешностью логарифмической линейки… Конечно, сегодня «на дворе» двадцать первый век, и рыскать по таблицам как-то не с руки!

В заключение добавлю «ложку дегтя». Длина развертки — это очень важный и «тонкий» момент! Если конструктор гнутой детали (особенно высокоточной (0,1 мм)) надеется расчетом точно и с первого раза определить ее, то он зря надеется. На практике в процесс гибки вмешается масса факторов – направление проката, допуск на толщину металла, утонение сечения в месте изгиба, «трапециевидность сечения», температура материала и оснастки, наличие или отсутствие смазки в зоне гибки, настроение гибщика… Короче, если партия деталей большая и дорого стоит – уточните практическими опытами длину развертки на нескольких образцах . И только после получения годной детали рубите заготовки на всю партию. А для изготовления заготовок для этих образцов, точности, которую обеспечивает программа расчета развертки, хватит с лихвой!

Программы расчета «по Анурьеву» и «по Рудману» в Excel можете найти в Сети.

Жду ваших комментариев, коллеги.

Для ОСТАЛЬНЫХ — можно скачать просто так...

Продолжение темы — в статье о .

О расчете развертки при гибке труб и прутков читайте .

Рассмотрим ситуацию, которая нередко возникает на гибочном производстве. Особенно это касается небольших цехов, которые обходятся средствами малой и средней механизации. Под малой и средней механизацией я подразумеваю использование ручных или полуавтоматических листогибов. Оператор суммирует длину полок, получает общую длину заготовки для требуемого изделия, отмеряет нужную длину, отрезает и.. после гибки получает неточное изделие. Погрешности размеров конечного изделия могут быть весьма значительными (зависит от сложности изделия, количества гибов и т.д.). Все потому, что при расчетах длины заготовки нужно учитывать толщину металла, радиус гибки, коэффициент положения нейтральной линии (К-фактор). Именно этому и будет посвящена данная статья.

Итак, приступим.

Честно говоря, произвести расчет размеров заготовки несложно. Нужно только понять, что нужно брать в расчет не только длины полок (прямых участков), но и длины криволинейных участков, получившихся ввиду пластических деформаций материала при гибке.

Притом, все формулы уже давно выведены «умными людьми», книги и ресурсы которых я постоянно указываю в конце статей (оттуда вы, при желании, можете получить дополнительные сведения).

Таким образом, для расчета правильной длины заготовки (развертки детали), обеспечивающей после гибки получение заданных размеров, необходимо, прежде всего, понять, по какому варианту мы будем производить расчет.

Напоминаю:

Таким образом, если вам нужна поверхность полки А без деформаций (например для расположения отверстий), то вы ведете расчет по варианту 1 . Если же вам важна общая высота полки А , тогда, без сомнения, вариант 2 более подходящий.

Вариант 1 (с припуском)

Нам понадобится:

в) Суммировать длины этих отрезков. При этом, длины прямых участков суммируются без изменения, а длины криволинейных участков – с учетом деформации материала и соответственного смещения нейтрального слоя.

Так, например, для заготовки с одним гибом, формула будет выглядеть следующим образом:

Где X 1 – длина первого прямого участка, Y 1 – длина второго прямого участка, φ – внешний угол, r – внутренний радиус гибки, k S – толщина металла.

Таким образом, ход расчета будет следующим..

Y1 + BA1 + X1 + BA2 + ..т.д

Длина формулы зависит от количества переменных.

Вариант 2 (с вычетом)

По моему опыту, это самый распространенный вариант расчетов для гибочных станков с поворотной балкой. Поэтому, давайте рассмотрим этот вариант.

Нам также необходимо:

а) Определить К-фактор (см таблицу).

б) Разбить контур изгибаемой детали на элементы, представляющие собой отрезки прямой и части окружностей;

Здесь необходимо рассмотреть новое понятие – внешняя граница гибки.

Чтобы было легче представить, см рисунок:

Внешняя граница гибки – вот эта воображаемая пунктирная линия.

Так вот, чтобы найти длину вычета, нужно от длины внешней границы отнять длину криволинейного участка.

Таким образом, формула длины заготовки по варианту 2:

Где Y 2 , X 2 – полки, φ – внешний угол, r – внутренний радиус гибки, k – коэффициент положения нейтральной линии (К-фактор), S – толщина металла.

Вычет у нас (BD ), как вы понимаете:

Внешняя граница гибки (OS ):

И в этом случае также необходимо каждую операцию рассчитывать последовательно. Ведь нам важна точная длина каждой полки.

Схема расчета следующая:

(Y2 – BD1 / 2) + (X2 – (BD1 / 2 + BD2 / 2)) + (M2 – (BD2 / 2 + BD3 /2)) + .. и т.д.

Графически это будет выглядеть так:

И еще, размер вычета (BD ) при последовательном расчете считать надо правильно. То есть, мы не просто сокращаем двойку. Сначала считаем весь BD , и только после этого получившийся результат делим пополам.

Надеюсь, что этой своей ремаркой я никого не обидел. Просто я знаю, что математика забывается и даже элементарные вычисления могут таить в себе никому не нужные сюрпризы.

На этом все. Всем спасибо за внимание.

При подготовке информации я использовал: 1. Статья «BendWorks. The fine-art of Sheet Metal Bending» Olaf Diegel, Complete Design Services, July 2002; 2. Романовский В.П. «Справочник по холодной штамповке» 1979г; материалы англоязычного ресурса SheetMetal.Me (раздел “Fabrication formulas”, ссылка:

§ 26. Общие сведения

Гибка - способ обработки металла давлением, при котором заготовке или ее части придается изогнутая форма. Слесарная гибка выполняется молотками (лучше с мягкими бойками) в тисках, на плите или с помощью специальных приспособлений. Тонкий листовой металл гнут киянками, изделия из проволоки диаметром до 3 мм - плоскогубцами или круглогубцами. Гибке подвергают только пластичный материал.

Гибка деталей - одна из наиболее распространенных слесарных операций. Изготовление деталей гибкой возможно как вручную на опорном инструменте и оправках, так и на гибочных машинах (прессах).

Сущность гибки заключается в том, что одна часть заготовки перегибается по отношению к другой на заданный угол. Происходит это следующим образом: на заготовку, свободно лежащую на двух опорах, действует изгибающая сила, которая вызывает в заготовке изгибающие напряжения, и если эти напряжения не превышают предел упругости материала, деформация, получаемая заготовкой, является упругой, и по снятии нагрузки заготовка принимает первоначальный вид (выпрямляется).

Однако при гибке необходимо добиться, чтобы заготовка после снятия нагрузки сохранила приданную ей форму, поэтому напряжения изгиба должны превышать предел упругости и деформация заготовки в этом случае будет пластической, при этом внутренние слои заготовки подвергаются сжатию и укорачиваются, наружные слои подвергаются растяжению и длина их увеличивается. В то же время средний слой заготовки - нейтральная линия - не испытывает ни сжатия, ни растяжения и длина его до и после изгиба остается постоянной (рис. 93,а). Поэтому определение размеров заготовок профилей сводится к подсчету длины прямых участков (полок), длины укорачивания заготовки в пределах закругления или длины нейтральной линии в пределах закругления.

При гибке деталей под прямым углом без закруглений с внутренней стороны припуск на загиб берется от 0,5 до 0,8 толщины материала. Складывая длину внутренних сторон угольника или скобы, получаем длину заготовки детали.

Пример 1 . На рис. 93, в, г показаны угольник и скоба с прямыми внутренними углами.

Размеры угольника (рис. 93, в): а = 30 мм, b = 70 мм, t = 6 мм. Длина развертки

L = а + b + 0,5t = 30 + 70 + 3 = 103 мм.

Размеры скобы (рис. 93, г): а = 70 мм, b = 80 мм, с = 60 мм, t = 4 мм. Длина развертки заготовки скобы

L = 70 + 80 + 60 + 2 = 212 мм.

Разбиваем угольник по чертежу на участки. Подставляем их размеры а = 50 мм, b = 30 мм, t = 6 мм, r = 4 мм в формулу

L = а + b + π/2(r + t/2)

Тогда получим:

L = 50 + 30 + 3,14/2(4 + 6/2) = 50 + 30 + 1,57⋅7 = 90,99 91 мм.

Разбиваем скобу на участки, как показано на чертеже. Их размеры: а = 80 мм, h = 65 мм, с = 120 мм, t = 5 мм, r = 2,5 мм.

L = а + h + с + π(r + t/2) = 80 + 65 + 120 + 3,14(2,5 + 5/2),

следовательно,

L = 265 4 + 15,75 = 280,75 мм.

Сгибая в окружность эту полосу, получим цилиндрическое кольцо, причем внешняя часть металла несколько вытянется, а внутренняя сожмется. Следовательно, длине заготовки будет соответствовать длина средней линии окружности, проходящая по середине между внешней и внутренней окружностями кольца.

Длина заготовки

Зная диаметр средней окружности кольца и подставляя его числовое значение в формулу, находим длину заготовки:

L = πD = 3,14 108 = 339,12 мм.

В результате предварительных расчетов можно изготовить деталь установленных размеров.

В процессе гибки в металле возникают значительные напряжения и деформации. Они особенно ощутимы, когда радиус гибки мал. Чтобы не появились при этом трещины в наружных слоях, радиус гибки не должен быть меньше минимально допустимого радиуса, который выбирается в зависимости от толщины и рода изгибаемого материала (рис. 95).

Рассчитать площадь поверхности или сечения трубопровода помогает формула длины развертки заготовки трубы. Расчет основывается на величине будущей трассы и диаметре планируемой конструкции. В каких случаях требуются такие вычисления и как они делаются, расскажет данная статья.

Когда нужны расчеты

Параметры рассчитываются на калькуляторе или с помощью онлайн-программ

Какую площадь должна иметь поверхность трубопровода, важно знать в следующих случаях.

  • При расчете теплоотдачи «теплого» пола или регистра. Здесь высчитывается суммарная площадь, которая отдает помещению тепло, исходящее из теплоносителя.
  • Когда определяются потери тепла по пути от источника тепловой энергии к обогревательным элементам – радиаторам, конвекторам и т.д. Чтобы определить количество и размеры таких приборов, нужно знать величину калорий, которой мы должны располагать, а она выводится с учетом развертки трубы.
  • Для определения необходимого количества теплоизоляционного материала, антикоррозийного покрытия и краски. При строительстве магистралей протяженностью в километры, точный расчет экономит предприятию немалые средства.
  • При определении рационально оправданного сечения профиля, которое могло бы обеспечить максимальную проводимость водопроводной или отопительной сети.

Определение параметров трубы

Площадь сечения

Труба представляет собой цилиндр, поэтому производить расчеты не сложно

Сечение круглого профиля – это круг, диаметр которого определяется, как разница величины наружного диаметра изделия за вычетом толщины стенок.

В геометрии площадь круга рассчитывается так:

S = π R^2 или S= π (D/2-N)^2, где S – площадь внутреннего сечения; π – число «пи»; R – радиус сечения; D - наружный диаметр; N - толщина стенок трубы.

Обратите внимание! Если в напорных системах жидкость заполняет весь объем трубопровода, то в самотечной канализации постоянно смачивается только часть стенок. В таких коллекторах применяется понятие площади живого сечения трубы.

Внешняя поверхность

Поверхность цилиндра, которым и является круглый профиль, представляет собой прямоугольник. Одна сторона фигуры – длина отрезка трубопровода, а вторая – величина окружности цилиндра.

Расчет развертки трубы осуществляется по формуле:

S = π D L, где S – площадь трубы, L – длина изделия.

Внутренняя поверхность

Такой показатель применяется в процессе гидродинамических расчетов, когда определяется площадь поверхности трубы, которая постоянно контактирует с водой.

При определении данного параметра следует учитывать:

  1. Чем больше диаметр водопроводных труб, тем меньше скорость проходящего потока зависит от шероховатости стенок конструкции.

На заметку! Если трубопроводы с большим диаметром характеризуются малой протяженностью, то величиной сопротивления стенок можно пренебречь.

  1. При гидродинамических расчетах шероховатости поверхности стенок придается не меньшее значение, чем ее площади. Если вода проходит по ржавому внутри водопроводу, то ее скорость меньше скорости жидкости, которая протекает по сравнительно гладкой полипропиленовой конструкции.
  1. Сети, которые монтируются из не оцинкованной стали, отличаются непостоянной площадью внутренней поверхности. При эксплуатации они покрываются ржавчиной и зарастают минеральными отложениями, из-за чего сужается просвет трубопровода.

Важно! Обратите внимание на этот факт, если захотите сделать холодное водоснабжение из стального материала. Проходимость такого водопровода сократится в два раза уже после десяти лет эксплуатации.

Расчет развертки трубы в данном случае делается с учетом того, что внутренний диаметр цилиндра определяется, как разность внешнего диаметра профиля и увеличенной вдвое толщины его стенок.

В результате площадь поверхности цилиндра определяется по формуле:

S= π (D-2N)L, где к уже известным параметрам добавляется показатель N, определяющий толщину стенок.

Формула развертки заготовки помогает рассчитать количество необходимой теплоизоляции

Чтобы знать, как посчитать развертку трубы, достаточно вспомнить курс геометрии, которую осваивают в средних классах. Приятно, что школьная программа находит применение во взрослой жизни и помогает решать серьезные задачи, связанные со строительством. Пусть они окажутся полезными и для вас!

tehnolen.ru

Онлайн калькулятор выкройка сектора из листовой стали. Расчет длины развертки

Рассмотрим ситуацию, которая нередко возникает на гибочном производстве. Особенно это касается небольших цехов, которые обходятся средствами малой и средней механизации. Под малой и средней механизацией я подразумеваю использование ручных или полуавтоматических листогибов. Оператор суммирует длину полок, получает общую длину заготовки для требуемого изделия, отмеряет нужную длину, отрезает и.. после гибки получает неточное изделие. Погрешности размеров конечного изделия могут быть весьма значительными (зависит от сложности изделия, количества гибов и т.д.). Все потому, что при расчетах длины заготовки нужно учитывать толщину металла, радиус гибки, коэффициент положения нейтральной линии (К-фактор). Именно этому и будет посвящена данная статья.

Итак, приступим.

Честно говоря, произвести расчет размеров заготовки несложно. Нужно только понять, что нужно брать в расчет не только длины полок (прямых участков), но и длины криволинейных участков, получившихся ввиду пластических деформаций материала при гибке.

Притом, все формулы уже давно выведены «умными людьми», книги и ресурсы которых я постоянно указываю в конце статей (оттуда вы, при желании, можете получить дополнительные сведения).

Таким образом, для расчета правильной длины заготовки (развертки детали), обеспечивающей после гибки получение заданных размеров, необходимо, прежде всего, понять, по какому варианту мы будем производить расчет.

Напоминаю:

Таким образом, если вам нужна поверхность полки А без деформаций (например для расположения отверстий), то вы ведете расчет по варианту 1 . Если же вам важна общая высота полки А , тогда, без сомнения, вариант 2 более подходящий.

Вариант 1 (с припуском)

Нам понадобится:

в) Суммировать длины этих отрезков. При этом, длины прямых участков суммируются без изменения, а длины криволинейных участков – с учетом деформации материала и соответственного смещения нейтрального слоя.

Так, например, для заготовки с одним гибом, формула будет выглядеть следующим образом:

Где X 1 – длина первого прямого участка, Y 1 – длина второго прямого участка, φ – внешний угол, r – внутренний радиус гибки, k S – толщина металла.

Таким образом, ход расчета будет следующим..

Y1 + BA1 + X1 + BA2 + ..т.д

Длина формулы зависит от количества переменных.

Вариант 2 (с вычетом)

По моему опыту, это самый распространенный вариант расчетов для гибочных станков с поворотной балкой. Поэтому, давайте рассмотрим этот вариант.

Нам также необходимо:

а) Определить К-фактор (см таблицу).

б) Разбить контур изгибаемой детали на элементы, представляющие собой отрезки прямой и части окружностей;

Здесь необходимо рассмотреть новое понятие – внешняя граница гибки.

Чтобы было легче представить, см рисунок:

Внешняя граница гибки – вот эта воображаемая пунктирная линия.

Так вот, чтобы найти длину вычета, нужно от длины внешней границы отнять длину криволинейного участка.

Таким образом, формула длины заготовки по варианту 2:

Где Y 2 , X 2 – полки, φ – внешний угол, r – внутренний радиус гибки, k – коэффициент положения нейтральной линии (К-фактор), S – толщина металла.

Вычет у нас (BD ), как вы понимаете:

Внешняя граница гибки (OS ):

И в этом случае также необходимо каждую операцию рассчитывать последовательно. Ведь нам важна точная длина каждой полки.

Схема расчета следующая:

(Y2 – BD1 / 2) + (X2 – (BD1 / 2 + BD2 / 2)) + (M2 – (BD2 / 2 + BD3 /2)) + .. и т.д.

Графически это будет выглядеть так:

И еще, размер вычета (BD ) при последовательном расчете считать надо правильно. То есть, мы не просто сокращаем двойку. Сначала считаем весь BD , и только после этого получившийся результат делим пополам.

Надеюсь, что этой своей ремаркой я никого не обидел. Просто я знаю, что математика забывается и даже элементарные вычисления могут таить в себе никому не нужные сюрпризы.

На этом все. Всем спасибо за внимание.

При подготовке информации я использовал: 1. Статья «BendWorks. The fine-art of Sheet Metal Bending» Olaf Diegel, Complete Design Services, July 2002; 2. Романовский В.П. «Справочник по холодной штамповке» 1979г; материалы англоязычного ресурса SheetMetal.Me (раздел “Fabrication formulas”, ссылка:

§ 26. Общие сведения

Гибка - способ обработки металла давлением, при котором заготовке или ее части придается изогнутая форма. Слесарная гибка выполняется молотками (лучше с мягкими бойками) в тисках, на плите или с помощью специальных приспособлений. Тонкий листовой металл гнут киянками, изделия из проволоки диаметром до 3 мм - плоскогубцами или круглогубцами. Гибке подвергают только пластичный материал.

Гибка деталей - одна из наиболее распространенных слесарных операций. Изготовление деталей гибкой возможно как вручную на опорном инструменте и оправках, так и на гибочных машинах (прессах).

Сущность гибки заключается в том, что одна часть заготовки перегибается по отношению к другой на заданный угол. Происходит это следующим образом: на заготовку, свободно лежащую на двух опорах, действует изгибающая сила, которая вызывает в заготовке изгибающие напряжения, и если эти напряжения не превышают предел упругости материала, деформация, получаемая заготовкой, является упругой, и по снятии нагрузки заготовка принимает первоначальный вид (выпрямляется).

Однако при гибке необходимо добиться, чтобы заготовка после снятия нагрузки сохранила приданную ей форму, поэтому напряжения изгиба должны превышать предел упругости и деформация заготовки в этом случае будет пластической, при этом внутренние слои заготовки подвергаются сжатию и укорачиваются, наружные слои подвергаются растяжению и длина их увеличивается. В то же время средний слой заготовки - нейтральная линия - не испытывает ни сжатия, ни растяжения и длина его до и после изгиба остается постоянной (рис. 93,а). Поэтому определение размеров заготовок профилей сводится к подсчету длины прямых участков (полок), длины укорачивания заготовки в пределах закругления или длины нейтральной линии в пределах закругления.

При гибке деталей под прямым углом без закруглений с внутренней стороны припуск на загиб берется от 0,5 до 0,8 толщины материала. Складывая длину внутренних сторон угольника или скобы, получаем длину заготовки детали.

Пример 1 . На рис. 93, в, г показаны угольник и скоба с прямыми внутренними углами.

Размеры угольника (рис. 93, в): а = 30 мм, b = 70 мм, t = 6 мм. Длина развертки

L = а + b + 0,5t = 30 + 70 + 3 = 103 мм.

Размеры скобы (рис. 93, г): а = 70 мм, b = 80 мм, с = 60 мм, t = 4 мм. Длина развертки заготовки скобы

L = 70 + 80 + 60 + 2 = 212 мм.

Разбиваем угольник по чертежу на участки. Подставляем их размеры а = 50 мм, b = 30 мм, t = 6 мм, r = 4 мм в формулу

L = а + b + π/2(r + t/2)

Тогда получим:

L = 50 + 30 + 3,14/2(4 + 6/2) = 50 + 30 + 1,57⋅7 = 90,99 91 мм.

Разбиваем скобу на участки, как показано на чертеже. Их размеры: а = 80 мм, h = 65 мм, с = 120 мм, t = 5 мм, r = 2,5 мм.

L = а + h + с + π(r + t/2) = 80 + 65 + 120 + 3,14(2,5 + 5/2),

следовательно,

L = 265 4 + 15,75 = 280,75 мм.

Сгибая в окружность эту полосу, получим цилиндрическое кольцо, причем внешняя часть металла несколько вытянется, а внутренняя сожмется. Следовательно, длине заготовки будет соответствовать длина средней линии окружности, проходящая по середине между внешней и внутренней окружностями кольца.

Длина заготовки

Зная диаметр средней окружности кольца и подставляя его числовое значение в формулу, находим длину заготовки:

L = πD = 3,14 108 = 339,12 мм.

В результате предварительных расчетов можно изготовить деталь установленных размеров.

В процессе гибки в металле возникают значительные напряжения и деформации. Они особенно ощутимы, когда радиус гибки мал. Чтобы не появились при этом трещины в наружных слоях, радиус гибки не должен быть меньше минимально допустимого радиуса, который выбирается в зависимости от толщины и рода изгибаемого материала (рис. 95).

Рассчитать площадь поверхности или сечения трубопровода помогает формула длины развертки заготовки трубы. Расчет основывается на величине будущей трассы и диаметре планируемой конструкции. В каких случаях требуются такие вычисления и как они делаются, расскажет данная статья.

Когда нужны расчеты

Параметры рассчитываются на калькуляторе или с помощью онлайн-программ

Какую площадь должна иметь поверхность трубопровода, важно знать в следующих случаях.

  • При расчете теплоотдачи «теплого» пола или регистра. Здесь высчитывается суммарная площадь, которая отдает помещению тепло, исходящее из теплоносителя.
  • Когда определяются потери тепла по пути от источника тепловой энергии к обогревательным элементам – радиаторам, конвекторам и т.д. Чтобы определить количество и размеры таких приборов, нужно знать величину калорий, которой мы должны располагать, а она выводится с учетом развертки трубы.
  • Для определения необходимого количества теплоизоляционного материала, антикоррозийного покрытия и краски. При строительстве магистралей протяженностью в километры, точный расчет экономит предприятию немалые средства.
  • При определении рационально оправданного сечения профиля, которое могло бы обеспечить максимальную проводимость водопроводной или отопительной сети.

Определение параметров трубы

Площадь сечения

Труба представляет собой цилиндр, поэтому производить расчеты не сложно

Сечение круглого профиля – это круг, диаметр которого определяется, как разница величины наружного диаметра изделия за вычетом толщины стенок.

В геометрии площадь круга рассчитывается так:

S = π R^2 или S= π (D/2-N)^2, где S – площадь внутреннего сечения; π – число «пи»; R – радиус сечения; D - наружный диаметр; N - толщина стенок трубы.

Обратите внимание! Если в напорных системах жидкость заполняет весь объем трубопровода, то в самотечной канализации постоянно смачивается только часть стенок. В таких коллекторах применяется понятие площади живого сечения трубы.

Внешняя поверхность

Поверхность цилиндра, которым и является круглый профиль, представляет собой прямоугольник. Одна сторона фигуры – длина отрезка трубопровода, а вторая – величина окружности цилиндра.

Расчет развертки трубы осуществляется по формуле:

S = π D L, где S – площадь трубы, L – длина изделия.

Внутренняя поверхность

Такой показатель применяется в процессе гидродинамических расчетов, когда определяется площадь поверхности трубы, которая постоянно контактирует с водой.

При определении данного параметра следует учитывать:

  1. Чем больше диаметр водопроводных труб, тем меньше скорость проходящего потока зависит от шероховатости стенок конструкции.

На заметку! Если трубопроводы с большим диаметром характеризуются малой протяженностью, то величиной сопротивления стенок можно пренебречь.

  1. При гидродинамических расчетах шероховатости поверхности стенок придается не меньшее значение, чем ее площади. Если вода проходит по ржавому внутри водопроводу, то ее скорость меньше скорости жидкости, которая протекает по сравнительно гладкой полипропиленовой конструкции.
  1. Сети, которые монтируются из не оцинкованной стали, отличаются непостоянной площадью внутренней поверхности. При эксплуатации они покрываются ржавчиной и зарастают минеральными отложениями, из-за чего сужается просвет трубопровода.

Важно! Обратите внимание на этот факт, если захотите сделать холодное водоснабжение из стального материала. Проходимость такого водопровода сократится в два раза уже после десяти лет эксплуатации.

Расчет развертки трубы в данном случае делается с учетом того, что внутренний диаметр цилиндра определяется, как разность внешнего диаметра профиля и увеличенной вдвое толщины его стенок.

В результате площадь поверхности цилиндра определяется по формуле:

S= π (D-2N)L, где к уже известным параметрам добавляется показатель N, определяющий толщину стенок.

Формула развертки заготовки помогает рассчитать количество необходимой теплоизоляции

Чтобы знать, как посчитать развертку трубы, достаточно вспомнить курс геометрии, которую осваивают в средних классах. Приятно, что школьная программа находит применение во взрослой жизни и помогает решать серьезные задачи, связанные со строительством. Пусть они окажутся полезными и для вас!

Как я и обещал в комментариях к статье , сегодня поговорим о расчете длины развертки детали, согнутой из листового металла. Конечно, процессу гибки подвергают не только детали из листов. Гнут детали круглого и...

Квадратного сечений, гнут и все прокатные профили – уголки, швеллеры, двутавры, трубы. Однако холодная гибка деталей из листового металлопроката, безусловно, является наиболее распространенной.

Для обеспечения минимальных радиусов, детали перед гибкой иногда нагревают. При этом повышается пластичность материала. Используя гибку с калибрующим ударом, добиваются того, что внутренний радиус детали становится абсолютно равным радиусу пуансона. При свободной V-образной гибке на листогибе внутренний радиус получается на практике больше радиуса пуансона. Чем более у материала детали ярко выражены пружинные свойства, тем более отличаются друг от друга внутренний радиус детали и радиус пуансона.

На рисунке, представленном ниже, изображен согнутый из листа толщиной s и шириной b уголок. Необходимо найти длину развертки.

Расчет развертки выполним в программе MS Excel.

В чертеже детали заданы: величина внутреннего радиуса R , угол a и длина прямолинейных участков L1 и L2 . Вроде все просто – элементарная геометрия и арифметика. В процессе изгиба заготовки происходит пластическая деформация материала. Наружные (относительно пуансона) волокна металла растягиваются, а внутренние сжимаются. В середине сечения – нейтральная поверхность…

Но вся проблема в том, что нейтральный слой располагается не в середине сечения металла! Для справки: нейтральный слой – поверхность расположения условных волокон металла, не растягивающихся и не сжимающихся при изгибе. Более того – эта поверхность (вроде как) не является поверхностью кругового цилиндра. Некоторые источники предполагают, что это параболический цилиндр…

Я более склонен доверять классическим теориям. Для сечения прямоугольной формы по классическому сопромату нейтральный слой располагается на поверхности кругового цилиндра с радиусом r .

r = s / ln (1+ s / R )

На базе этой формулы и создана программа расчета развертки листовых деталей из сталей марок Ст3 и 10…20 в Excel.

В ячейках со светло-зеленой и бирюзовой заливкой пишем исходные данные. В ячейке со светло-желтой заливкой считываем результат расчета.

1. Записываем толщину листовой заготовки s в миллиметрах

в ячейку D 3 : 5,0

2. Длину первого прямого участка L 1 в миллиметрах вводим

в ячейку D 4 : 40,0

3. Внутренний радиус сгиба первого участка R 1 в миллиметрах записываем

в ячейку D 5 : 5,0

4. Угол сгиба первого участка a 1 в градусах пишем

в ячейку D 6 : 90,0

5. Длину второго прямого участка детали L 2 в миллиметрах вводим

в ячейку D 7 : 40,0

6. Все, результат расчета — длина развертки детали L в миллиметрах

в ячейке D 17 : =D4+ЕСЛИ(D5=0;0;ПИ()/180*D6*D3/LN ((D5+D3)/D5))+ +D7+ЕСЛИ(D8=0;0;ПИ()/180*D9*D3/LN ((D8+D3)/D8))+D10+ +ЕСЛИ(D11=0;0;ПИ()/180*D12*D3/LN ((D11+D3)/D11))+D13+ +ЕСЛИ(D14=0;0;ПИ()/180*D15*D3/LN ((D14+D3)/D14))+D16 =91.33

L = ∑ (Li +3.14/180* ai * s / ln ((Ri + s )/ Ri )+ L (i +1) )

Используя предложенную программу, можно рассчитать длину развертки для деталей с одним сгибом – уголков, с двумя сгибами – швеллеров и Z-профилей, с тремя и четырьмя сгибами. Если необходимо выполнить расчет развертки детали с большим числом сгибов, то программу очень легко доработать, расширив возможности.

Важным преимуществом предложенной программы (в отличие от многих аналогичных) является возможность задания на каждом шаге различных углов и радиусов гибки .

А «правильные» ли результаты выдает программа? Давайте, сравним полученный результат с результатами расчетов по методике изложенной в «Справочнике конструктора-машиностроителя» В.И. Анурьева и в «Справочнике конструктора штампов» Л.И. Рудмана. Причем в расчет возьмем только криволинейный участок, так как прямолинейные участки все, надеюсь, считают одинаково.

Проверим рассмотренный выше пример.

«По программе» : 11,33 мм – 100,0%

«По Анурьеву» : 10,60 мм – 93,6%

«По Рудману» : 11,20 мм – 98,9%

Увеличим в нашем примере радиус гибки R 1 в два раза — до 10 мм. Еще раз произведем расчет по трем методикам.

«По программе» : 19,37 мм – 100,0%

«По Анурьеву» : 18,65 мм – 96,3%

«По Рудману» : 19,30 мм – 99,6%

Таким образом, предложенная методика расчетов выдает результаты на 0,4%…1,1% больше, чем «по Рудману» и на 6.4%…3,7% больше, чем «по Анурьеву». Понятно, что погрешность существенно уменьшится, когда мы добавим прямолинейные участки.

«По программе» : 99,37 мм – 100,0%

«По Анурьеву» : 98,65 мм – 99,3%

«По Рудману» : 99,30 мм – 99,9%

Возможно Рудман составлял свои таблицы по этой же формуле, которую использую я, но с погрешностью логарифмической линейки… Конечно, сегодня «на дворе» двадцать первый век, и рыскать по таблицам как-то не с руки!

В заключение добавлю «ложку дегтя». Длина развертки — это очень важный и «тонкий» момент! Если конструктор гнутой детали (особенно высокоточной (0,1 мм)) надеется расчетом точно и с первого раза определить ее, то он зря надеется. На практике в процесс гибки вмешается масса факторов – направление проката, допуск на толщину металла, утонение сечения в месте изгиба, «трапециевидность сечения», температура материала и оснастки, наличие или отсутствие смазки в зоне гибки, настроение гибщика… Короче, если партия деталей большая и дорого стоит – уточните практическими опытами длину развертки на нескольких образцах . И только после получения годной детали рубите заготовки на всю партию. А для изготовления заготовок для этих образцов, точности, которую обеспечивает программа расчета развертки, хватит с лихвой!

Программы расчета «по Анурьеву» и «по Рудману» в Excel можете найти в Сети.

Жду ваших комментариев, коллеги.

Для ОСТАЛЬНЫХ — можно скачать просто так...

Продолжение темы — в статье о .

О расчете развертки при гибке труб и прутков читайте .

ruscos.ru


Смотрите также