(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Сопротивление трубы формула


Гидравлическое сопротивление труб

ГлавнаяСтатьи и материалыГидравлическое сопротивление труб

Любая трубопроводная коммуникация имеет не только прямолинейные участки, но и повороты, ответвления, для создания которых используются различные фитинги. А для регулирования потока рабочей среды устанавливается запорная арматура. Всё это создаёт сопротивление, поэтому очень важно перед тем, как приступать к монтажу трубопровода, необходимо выполнить ряд расчётов, в том числе определить гидравлическое сопротивление. Это позволит в будущем сократить теплопотери и, соответственно, избежать лишних энергозатрат.

Гидравлический расчёт выполняется с целью:

  • Вычисления потерь давления на конкретных отрезках системы отопления;
  • Определения оптимального диаметра трубопровода с учётом рекомендованной скорости перемещения рабочего потока;
  • Расчёта тепловых потерь и величины наименьшего давления в трубопроводе;
  • Правильного выполнения увязки параллельно расположенных гидравлических ветвей и закреплённой на ней запорной арматуры.

Во время движения по замкнутому контуру рабочему потоку приходится преодолевать определённое гидравлическое сопротивление. Причём с увеличением его значения, должна увеличиваться мощность насоса. Только правильные расчёты помогут выбрать оптимальный вариант насоса. Нет смысла покупать слишком мощное оборудования для трубопроводов с низким гидравлическим сопротивлением, ведь, чем больше мощность, тем выше энергозатраты.

А если мощность будет, наоборот, недостаточной, то насосное оборудование не сможет обеспечить достаточный напор теплоносителя, что приведёт к увеличению тепловых потерь.

Это безмерная величина, показывающая, каковы потери удельной энергии.

Ламинарное перемещение рабочего потока

При ламинарном (равномерном) перемещении рабочей среды по трубопроводу круглого сечения потери давления по длине вычисляется по формуле Дарси-Вейсбаха:

Где:

 - потери давления по длине;

 - коэффициент гидравлического сопротивления;

v – скорость движения рабочей среды;

g – ускорение силы тяжести;

d – диаметр трубопроводной магистрали.

Практически определено, что на коэффициент гидравлического сопротивления непосредственное влияние оказывает число Рейнольдса (Re) – безмерная величина, которая характеризует поток жидкости и выражается отношением динамического давления к касательному напряжению.

Если Re меньше, чем 2300, то для расчёта применяется формула:

Для трубопроводов в форме круглого цилиндра:

Для трубопроводных коммуникаций с другим (не круглым) сечением:

Где А=57 – для квадратных труб.

Турбулентное течение рабочего потока

При турбулентном (неравномерном, беспорядочном) перемещении рабочего потока коэффициент сопротивления вычисляют опытным путём, как функцию от Re. Если необходимо определить коэффициент гидравлического сопротивления для магистрали круглого сечения с гладкими поверхностями при

 , то для расчёта применяется формула Блаузиуса:

В случае турбулентного перемещения рабочей среды на величину коэффициента трения влияет число Рейнольдса (характер течения) и насколько гладкая внутренняя поверхность трубопроводной коммуникации.

Коэффициент местного сопротивления

Это безмерная величина, которая устанавливается экспериментальным путём с помощью формулы:

Где:

 – коэффициент местного сопротивления;

 – потеря напора;

 – отношение скорости потока к ускорению силы тяжести – скоростной поток.

При неизменной скорости перемещения рабочей среды по всему сечению применяется формула:

 , где

 – энергия торможения.

Для фитингов из ППР:

ДетальОбозначениеПримечаниеКоэффициент
Муфта0,25
Муфта переходнаяУменьшение на 1 размер0,40
Уменьшение на 2 размер0,50
Уменьшение на 3 размер0,60
Уменьшение на 4 размер0,70
Угольник 90°1,20
Угольник 45°0,50
ТройникРазделение потока1,20
Соединение потока0,80
КрестовинаСоединение потока2,10
Разделение потока3,70
Муфта комб. вн. рез. 0,50
Муфта комб. нар. рез0,70
Угольник комб. вн. рез.1,40
Угольник комб. нар. рез.1,60
Тройник комб. вн. рез.1,40 - 1,80
Вентиль20 мм9,50
25 мм8,50
32 мм7,60
40 мм5,70

Для полиэтиленовых труб

ТрубаРасход, м3/часСкорость, м/сПотери напора, м/100м
Сталь новая 133x5601,43,6
Сталь старая 133x5601,46,84
ПЭ 100 110x6,6 (5ЭР 17)/td> 602,264,1
ПЭ 80 110x8,1 (ЗйР 13,6)602,414,8
Сталь новая 245x64002,64,3
Сталь старая 245x64002,67,0
ПЭ 100 225x13,4 (50 В 17)4003,64,0
ПЭ 80 225x16,6 (ЗЭК 13,6)4003,854,8
Сталь новая 630x1030002,851,33
Сталь старая 630x1030002,851,98
ПЭ 100 560x33,2 (ЗЭК 17)30004,351,96
ПЭ 80 560x41,2 (ЗЭК 13,6)30004,652,3
Сталь новая 820x124000 2,230,6
Сталь старая 820x1240002,230,87
ПЭ100 800x47,4 (ЗЭК 17)40002,850,59
ПЭ 80 800x58,8 (ЗЭР 13,6)40003,00,69

Для бесшовных стальных труб

Режим движенияЧисло РейнольдсаОпределения λ
Ламинарный или 
ПереходныйПроектирование трубопроводов не рекомендуется
Турбулентный1-я область (ф-ла Блазиуса) Бф-ла Конакова)
2-я область (ф-ла Альтшуля)
3-я область (ф-ла Альтшуля) (ф-ла Никурадзе)

Для металлопластиковых труб

НаименованиеСимволКоэффициент
Тройник разделения потока7,6
Тройник проходной4,2
Тройник противоположные потоки при разделении потока8,5
Тройник противоположные потоки при слиянии потока8,5
Угол 90°6,3
Дуга0,9
Редукционный переход6,3
Установочный уголок5,4
С точки зрения гидравлического сопротивления, наиболее оптимальными являются трубопроводные системы с гладкой внутренней стенкой:

Полипропиленовые трубы произведенные в Германии, широкого спектра применения.

Система отлично подходит для систем горячего и холодного водоснабжения и отопления, как в частных, так и промышленных масштабах. Так же используется для транспортировки химических сред.

Имеет гладкую внутреннюю стенку, что обеспечивает низкий коэффициент гидравлического сопротивления.

Полипропиленовые трубы произведенные в Германии, широкого спектра применения.

Трубопроводная система из инновационного материала fusiolen, специально разработанная для систем холодоснабжения, обогрева поверхностей, транспортировки агрессивных сред и сжатого воздуха, а также для систем геотермальной энергетики.

Имеет гладкую внутреннюю стенку, что обеспечивает низкий коэффициент гидравлического сопротивления.

Канализационная система из материала НПВХ, подходит для транспортировки агрессивных сред, в том числе хлорированной воды

Имеет гладкую внутреннюю стенку, что обеспечивает низкий коэффициент гидравлического сопротивления.

agpipe.ru

Гидравлическое сопротивление

Опубликовано 24 Июн 2018Рубрика: Теплотехника | 15 комментариев

Выполнение расчета гидравлического сопротивления отдельного трубопровода и всей системы в комплексе является ключевой задачей в гидравлике,  решение которой позволяет подобрать сечения труб и насос с необходимыми значениями давления и расхода в рабочем режиме.

В одной из ранних статей на блоге рассмотрен простой пример расчета трубопровода с параллельными участками с использованием понятия «характеристика сопротивления». В конце статьи я анонсировал: «Можно существенно  повысить точность метода…». Под этой фразой подразумевалось учесть зависимость характеристик сопротивления от расхода более точно. В том расчете характеристики сопротивлений выбирались из таблиц по диаметру трубы и по предполагаемому расходу. Полковов Вячеслав Леонидович написал взамен таблиц пользовательские функции в Excel для более точного вычисления гидравлических сопротивлений, которые любезно предоставил для печати. Термины «характеристика сопротивления» и «гидравлическое сопротивление» обозначают одно и то же.

Краткая теория.

В упомянутой выше статье теория вкратце рассматривалась. Освежим в памяти основные моменты.

Движение жидкостей по трубам и каналам сопровождается потерей давления, которая складывается из потерь на трение по длине трубопровода и потерь в местных сопротивлениях – в изгибах, отводах, сужениях, тройниках, запорной арматуре и других элементах.

В гидравлике в общем случае потери давления вычисляются по формуле Вейсбаха:

∆Р=ζ·ρ·w²/2, Па, где:

  • ζ – безразмерный коэффициент местного сопротивления;
  • ρ – объёмная плотность жидкости, кг/м3;
  • w – скорость потока жидкости, м/с.

Если с плотностью и скоростью всё более или менее понятно, то определение коэффициентов местных сопротивлений – достаточно непростая задача!

Как было отмечено выше, в гидравлических расчетах принято разделять два вида потерь давления в сетях трубопроводов.

  1. В первом случае «местным сопротивлением» считается трение по длине прямого участка трубопровода. Перепад давления для потока в круглой трубе рассчитывается по формуле Дарси-Вейсбаха:

∆Ртр=ζтр·ρ·w²/2=λ·L·ρ·w²/(2·D), Па, где:

  • L – длина трубы, м;
  • D – внутренний диаметр трубы, м;
  • λ – безразмерный коэффициент гидравлического трения (коэффициент Дарси).

Таким образом, при учете сопротивления трению коэффициент потерь – коэффициент местного сопротивления – и коэффициент гидравлического трения связаны для круглых труб зависимостью:

ζтр=λ·L/D

  1. Во втором случае потери давления в местных сопротивлениях вычисляются по классической формуле Вейсбаха:

∆Рм=ζм·ρ·w²/2, Па

Коэффициенты местных сопротивлений определяются для каждого вида «препятствия» по индивидуальным эмпирическим формулам, полученным из практических опытов.

Выполним ряд математических преобразований. Для начала выразим скорость потока через массовый расход жидкости:

w=G/(ρ·π·D²/4), м/с, где:

  • G – расход жидкости, кг/с;
  • π – число Пи.

Тогда:

∆Ртр=8·λ·L·G²/(ρ·π²·D5), Па;

∆Рм=8·ζм·G²/(ρ·π²·D4), Па.

Введем понятие гидравлических сопротивлений:

Sтр=8·λ·L·/(ρ·π²·D5), Па/(кг/с)²;

Sм=8·ζм·/(ρ·π²·D4), Па/(кг/с)².

И получим удобные простые формулы для вычисления потерь давления при прохождении жидкости в количестве G через эти гидравлические сопротивления:

∆Ртр=Sтр·G², Па;

∆Рм=Sм·G², Па.

Размерность гидравлического сопротивления (Па/(кг/с)²) определена массовой скоростью (кг/с) движения жидкости, а физические процессы в транспортных системах зависят от её объёмной скорости (м3/с), что учтено в формулах присутствием объёмной плотности ρ транспортируемой жидкости.

Для удобства последующих расчётов целесообразно введение понятия «гидравлическая проводимость» - а.

Для последовательного и параллельного соединений гидравлических сопротивлений справедливы формулы:

Sпосл=S1+S2+…+Sn, Па/(кг/с)²;

Sпар=1/(а1+a2+…+an)², Па/(кг/с)²;

ai=(1/Si)0,5, (кг/с)/Па0,5.

Коэффициент гидравлического трения.

Для определения гидравлического сопротивления от трения о стенки трубы Sтр необходимо знать параметр Дарси λ – коэффициент гидравлического трения по длине.

В технической литературе приводится значительное количество формул разных авторов, по которым выполняется вычисление коэффициента гидравлического трения в различных диапазонах значений числа Рейнольдса.

Обозначения в таблице:

  • Re – число Рейнольдса;
  • k – эквивалентная шероховатость внутренней стенки трубы (средняя высота выступов), м.

В [1] приведена еще одна интересная формула расчета коэффициента гидравлического трения:

λ=0,11·[(68/Re+k/D+(1904/Re)14)/(115·(1904/Re)10+1)]0,25

Вячеслав Леонидович выполнил проверочные расчеты и выявил, что вышеприведенная формула является наиболее универсальной в широком диапазоне чисел Рейнольдса!

Значения, полученные по этой формуле чрезвычайно близки значениям:

  • функции λ=64/Re для зоны ламинарного характера потока в диапазоне 10

    al-vo.ru

    17 Гидравлические потери по длине трубы

    17-3

    Формула гидравлического сопротивления по длине трубопровода

    Потери напора по длине трубопровода определяются по формуле Дарси-Вейсбаха

    , где – коэффициент гидравлического трения (коэффициент Дарси). Потери существенно зависят от диметра труб, вязкости жидкости, скорости ее движения и шероховатости стенок труб. Из формулы можно сделать вывод, что потери пропорциональны длине трубы, обратно пропорциональны диаметру и пропорциональны квадрату средней скорости потока. Однако такой вывод будет справедлив только при неизменном коэффициенте Дарси. Фактически коэффициент Дарси в общем случае зависит от относительной шероховатости стенок трубопровода и числа Re, т.е. .

    Эмпирическое изучение потерь напора по длине трубы. Опыты Никурадзе

    Коэффициент определяется экспериментально (считается по эмпирическим формулам). Экспериментальные данные для в широком диапазоне чисел Re были получены Никурадзе. Искусственная шероховатость была получена приклеиванием на внутреннюю поверхность трубы на лаковую основу просеянного песка определенного размера. Опыты проводились для различных жидкостей, размеров шероховатости и диаметров трубопровода. Полученные опытные данные обобщены в графике Никурадзе и позволили раскрыть механизм потерь напора по длине трубы. На графике в логарифмических осях представлены величины коэффициента гидравлического трения от при различных значениях относительной шероховатости . Здесь – абсолютная величина искусственной шероховатости. Логарифм используется для того, чтобы охватить возможно больший диапазон значений Re, и в то же время достаточно детально представить область малых значений числа Re (ламинарный и переходный режимы движения). Каждому фиксированному значению на графике соответствует отдельная кривая, причем чем больше , тем кривая расположена выше.

    1. Ламинарный режим (на прямой I). Коэффициент Дарси не зависит от шероховатости. Выражение для может быть получено теоретически , оно хорошо согласуется с экспериментальными данными.

    2. Переходный режим (между прямыми I и II). Обычно полагают, что движение в этом режиме турбулентное (ламинарный режим здесь неустойчив) и экстраполируют на эту область зависимости турбулентного режима.

    В турбулентном режиме выделяют три области.

    3. Область гидравлически гладких труб (на прямой II). В соответствии с рассмотренной ранее структурой турбулентного потока толщина вязкого ламинарного слоя у стенки . Величина всех неровностей меньше толщины ламинарной пленки. Здесь коэффициент Дарси не зависит от шероховатости.

    4. Доквадратичная область (между прямыми II и III). Чем больше шероховатость, тем раньше происходит выход выступов шероховатости из ламинарной пристеночной пленки, а значит и выход из области гидравлически гладких труб, т.е. тем раньше начинает проявляться влияние шероховатости.

    5. Квадратичная область (справа от прямой III). Коэффициент Дарси не зависит от Re («автомодельность»по Re , т.е. независимость от Re). Потери напора по длине трубы пропорциональны квадрату скорости.

    График Никурадзе позволяет объяснить природу гидравлического трения, однако так как он получен для искусственной шероховатости им нельзя пользоваться при естественной шероховатости. Для реальных труб выход выступов шероховатости из ламинарной пристеночной пленки происходит не одновременно, кривые не имеют минимума.

    Для естественной шероховатости вводят понятие абсолютной эквивалентной шероховатости , т.е. такой равномерной шероховатости, для которой потери в квадратичном режиме те же, что и у естественной шероховатости.

    Формулы для определения коэффициента гидравлического трения

    1. . Ламинарный режим. . (Единственный случай, когда формула для коэффициента Дарси может быть получена теоретически. Все остальные формулы получены по экспериментальным данным – эмпирические формулы). В курсе гидропривода обычно используют формулу , в которой учтены потери на начальном участке трубы (?).

    2. . Переходный режим. Как правило расчет потерь производят по формулам для турбулентного режима (см. ниже), однако для этой области существует редко используемая формула Френкеля .

    3. . Турбулентный режим. Область гидравлически гладких труб. Формула Блазиуса . Иногда встречается в виде .

    4. . Турбулентный режим. Доквадратичная область.

    Формула Альтшуля . Наиболее часто используемая формула, рекомендована к применению.

    5. . Турбулентный режим. Квадратичная область сопротивления.

    Формула Шифринсона .

    Области 4 и 5 иногда называют областью шероховатых труб ( в отличие от области 3 – гидравлически гладких труб), причем область 5 – областью вполне шероховатых труб.

    Формула Альтшуля при больших числах Re дает совпадение с формулой Шифринсона (второе слагаемое в скобках становится пренебрежимо мало), а при малых – с формулой Блазиуса (первое слагаемое относительно мало).

    Экспериментально получена формула Колбрука и Уайта

    проверить звук 27 мин 10 ЛК

    studfiles.net

    Гидравлические сопротивления

    Потери энергии (уменьшение гидравлического напора) можно наблюдать в движущейся жидкости не только на сравнительно длинных участках, но и на коротких. В одних случаях потери напора распределяются (иногда равномерно) по длине трубопровода - это линейные потери; в других - они сосредоточены на очень коротких участках, длиной которых можно пренебречь, - на так называемых местных гидравлических сопротивлениях: вентили, всевозможные закругления, сужения, расширения и т.д., короче всюду, где поток претерпевает деформацию. Источником потерь во всех случаях является вязкость жидкости.

    Следует заметить, что потери напора и по длине и в местных гидравлических сопротивлениях существенным образом зависят от так называемого режима движения жидкости.

    4.1. Режимы движения жидкости

    При наблюдении за движением жидкости в трубах и каналах, можно заметить, что в одном случае жидкость сохраняет определенный строй своих частиц, а в других - перемещаются бессистемно. Однако исчерпывающие опыты по этому вопросу были проведены Рейнольдсом в 1883 г. На рис. 4.1 изображена установка, аналогичная той, на которой Рейнольдс производил свои опыты.

    Рис. 4.1. Схема установки Рейнольдса

    Установка состоит из резервуара А с водой, от которого отходит стеклянная труба В с краном С на конце, и сосуда D с водным раствором краски, которая может по трубке вводиться тонкой струйкой внутрь стеклянной трубы В.

    Первый случай движения жидкости. Если немного приоткрыть кран С и дать возможность воде протекать в трубе с небольшой скоростью, а затем с помощью крана Е впустить краску в поток воды, то увидим, что введенная в трубу краска не будет перемешиваться с потоком воды. Струйка краски будет отчетливо видимой вдоль всей стеклянной трубы, что указывает на слоистый характер течения жидкости и на отсутствие перемешивания. Если при этом, если к трубе подсоединить пьезометр или трубку Пито, то они покажут неизменность давления и скорости по времени. Такой режим движения называется ламинарный.

    Второй случай движения жидкости. При постепенном увеличении скорости течения воды в трубе путем открытия крана С картина течения вначале не меняется, но затем при определенной скорости течения наступает быстрое ее изменение. Струйка краски по выходе из трубки начинает колебаться, затем размывается и перемешивается с потоком воды, причем становятся заметными вихреобразования и вращательное движение жидкости. Пьезометр и трубка Пито при этом покажут непрерывные пульсации давления и скорости в потоке воды. Такое течение называется турбулентным (рис.4.1, вверху).

    Если уменьшить скорость потока, то восстановится ламинарное течение.

    Итак, ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсации скорости и давления. При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, при этом отсутствуют поперечные перемещения частиц жидкости.

    Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости с пульсациями скоростей и давлений. Наряду с основным продольным перемещением жидкости наблюдаются поперечные перемещения и вращательные движения отдельных объемов жидкости. Переход от ламинарного режима к турбулентному наблюдается при определенной скорости движения жидкости. Эта скорость называется критической υ кр.

    Значение этой скорости прямо пропорционально кинематической вязкости жидкости и обратно пропорционально диаметру трубы.

    где ν - кинематическая вязкость; k - безразмерный коэффициент; d - внутренний диаметр трубы.

    Входящий в эту формулу безразмерный коэффициент k, одинаков для всех жидкостей и газов, а также для любых диаметров труб. Этот коэффициент называется критическим числом Рейнольдса Reкр и определяется следующим образом:

    Как показывает опыт, для труб круглого сечения Reкр примерно равно 2300.

    Таким образом, критерий подобия Рейнольдса позволяет судить о режиме течения жидкости в трубе. При Re < Reкр течение является ламинарным, а при Re > Reкр течение является турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re примерно равно 4000, а при Re = 2300…4000 имеет место переходная, критическая область.

    Режим движения жидкости напрямую влияет на степень гидравлического сопротивления трубопроводов.

    4.2. Кавитация

    В некоторых случаях при движении жидкости в закрытых руслах происходит явление, связанное с изменением агрегатного состояния жидкости, т.е. превращение ее в пар с выделением из жидкости растворенных в ней газов.

    Наглядно это явление можно продемонстрировать на простом устройстве, состоящим из трубы, на отдельном участке которой установлена прозрачная трубка Вентури (рис.4.2). Вода под давлением движется от сечения 1-1 через сечение 2-2 к сечению 3-3. Как видно из рисунка, сечение 2-2 имеет меньший диаметр. Скорость течения жидкости в трубе можно изменять, например, установленным после сечения 3-3 краном.

    Рис. 4.2. Схема трубки для демонстрации кавитации

    При небольшой скорости никаких видимых изменений в движении жидкости не происходит. При увеличении скорости движения жидкости в узком сечении трубки Вентури 2-2 появляется отчетливая зона с образованием пузырьков газа. Образуется область местного кипения, т.е. образование пара с выделением растворенного в воде газа. Далее при подходе жидкости к сечению 3-3 это явление исчезает.

    Это явление обусловлено следующим. Известно, что при движении жидкой или газообразной среды, давление в ней падает. Причем, чем выше скорость движения среды, тем давление в ней ниже. Поэтому, при течении жидкости через местное сужение 2-2, согласно уравнению неразрывности течений, увеличивается скорость с одновременным падением давления в этом месте. Если абсолютное давление при этом достигает значения равного давлению насыщенных паров жидкости при данной температуре или значения равного давлению, при котором начинается выделение из нее растворимых газов, то в данном месте потока наблюдается интенсивное парообразование (кипение) и выделение газов. Такое явление называется кавитацией.

    При дальнейшем движении жидкости к сечению 3-3, пузырьки исчезают, т.е. происходит резкое уменьшение их размеров. В то время, когда пузырек исчезает (схлопывается), в точке его схлопывания происходит резкое увеличение давления, которое передается на соседние объемы жидкости и через них на стенки трубопровода. Таким образом, от таких многочисленных местных повышений давлений (гидроударов), возникает вибрация.

    Таким образом, кавитация - это местное нарушение сплошности течения с образованием паровых и газовых пузырей (каверн), обусловленное местным падением давления в потоке.

    Кавитация в обычных случаях является нежелательным явлением, и ее не следует допускать в трубопроводах и других элементах гидросистем. Кавитация возникает в кранах, вентилях, задвижках, жиклерах и т.д.

    Кавитация может иметь место в гидромашинах (насосах и гидротурбинах), снижая при этом их коэффициент полезного действия, а при длительном воздействии кавитации происходит разрушение деталей, подверженных вибрации. Кроме этого разрушаются стенки трубопроводов, уменьшается их пропускная способность вследствие уменьшения живого сечения трубы.

    4.3. Потери напора при ламинарном течении жидкости

    Как показывают исследования, при ламинарном течении жидкости в круглой трубе максимальная скорость находится на оси трубы. У стенок трубы скорость равна нулю, т.к. частицы жидкости покрывают внутреннюю поверхность трубопровода тонким неподвижным слоем. От стенок трубы к ее оси скорости нарастаю плавно. График распределения скоростей по поперечному сечению потока представляет собой параболоид вращения, а сечение параболоида осевой плоскостью - квадратичную параболу (рис.4.3).

    Рис. 4.3. Схема для рассмотрения ламинарного потока

    Уравнение, связывающее переменные υ и r, имеет следующий вид:

    где P1 и P2 - давления соответственно в сечениях 1 и 2.

    У стенок трубы величина r = R, , значит скорость υ = 0, а при r = 0 (на оси потока) скорость будет максимальной

    Теперь определим расход жидкости при ламинарном течении в круглой трубе. Так как эпюра распределения скоростей в круглой трубе имеет вид параболоида вращения с максимальным значением скорости в центре трубы, то расход жидкости численно равен объему этого параболоида. Определим этот объем.

    Максимальная скорость дает высоту параболоида

    Как известно из геометрии, объем параболоида высотой h и площадью ρR2 равен

    а в нашем случае

    Если вместо R подставить диаметр трубы d, то формула (4.4) приобретет вид

    Расход в трубе можно выразить через среднюю скорость:

    откуда

    Для определения потерь напора при ламинарном течении жидкости в круглой трубе рассмотрим участок трубы длиной l, по которому поток течет в условиях ламинарного режима (рис.4.3).

    Потеря давления в трубопроводе будет равна

    Если в формуле динамический коэффициент вязкости μ заменить через кинематический коэффициент вязкости υ и плотность ρ ( μ = υ ρ ) и разделить обе части равенства на объемный вес жидкости γ = ρ g, то получим:

    Так как левая часть полученного равенства равна потерям напора hпот в трубе постоянного диаметра, то окончательно это равенство примет вид:

    Уравнение может быть преобразовано в универсальную формулу Вейсбаха-Дарси, которая окончательно записывается так:

    где λ - коэффициент гидравлического трения, который для ламинарного потока вычисляется по выражению:

    Однако при ламинарном режиме для определения коэффициента гидравлического трения λ Т.М. Башта рекомендует при Re < 2300 применять формулу

    4.4. Потери напора при турбулентном течении жидкости

    Как было указано в п.4.1, для турбулентного течения характерно перемешивание жидкости, пульсации скоростей и давлений. Если с помощью особо чувствительного прибора-самописца измерять пульсации, например, скорости по времени в фиксированной точке потока, то получим картину, подобную показанной на рис.4.4. Скорость беспорядочно колеблется около некоторого осредненного по времени значения υ оср, которое данном случае остается постоянным.

    Характер линий тока в трубе в данный момент времени отличается большим разнообразием (рис.4.5).

    Рис. 4.4. Пульсация скорости в турбулентном потоке. Рис. 4.5. Характер линий тока в турбулентном потоке

    При турбулентном режиме движения жидкости в трубах эпюра распределения скоростей имеет вид, показанный на рис. 4.6. В тонком пристенном слое толщиной δ жидкость течет в ламинарном режиме, а остальные слои текут в турбулентном режиме, и называются турбулентным ядром. Таким образом, строго говоря, турбулентного движения в чистом виде не существует. Оно сопровождается ламинарным движением у стенок, хотя слой δ с ламинарным режимом весьма мал по сравнению с турбулентным ядром.

    Рис. 4.6. Модель турбулентного режима движения жидкости

    Основной расчетной формулой для потерь напора при турбулентном течении жидкости в круглых трубах является уже приводившаяся выше эмпирическая формула, называемая формулой Вейсбаха-Дарси и имеющая следующий вид:

    Различие заключается лишь в значениях коэффициента гидравлического трения λ. Этот коэффициент зависит от числа Рейнольдса Re и от безразмерного геометрического фактора - относительной шероховатости Δ/d (или Δ/r0, где r0 - радиус трубы).

    Впервые наиболее исчерпывающей работы по определению были даны И.И. Никурадзе, который на основе опытных данных построил график зависимости lg(1000λ) от lg Re для ряда значений Δ/r 0. Опыты Никурадзе были проведены на трубах с искусственно заданной шероховатостью, полученной путем приклейки песчинок определенного размера на внутренние стенки трубопровода. Результаты этих исследований представлены на рис. 4.7, где построены кривые зависимости lg (1000λ) от lg Re для ряда значений Δ/r0.

    Прямая I соответствует ламинарному режиму движения жидкости.

    Далее на графике можно рассматривать три области.

    Первая область - область малых Re и Δ/r0, где коэффициент λ не зависит от шероховатости, а определяется лишь числом Re (отмечена на рис.4.7 прямой II ). Это область гидравлически гладких труб. Если число Рейнольдса лежит в диапазоне 4000 < Re < 10(d / Δ э) коэффициент λ определяется по полуэмпирической формуле Блазиуса

    Для определения существует также эмпирическая формула П.К. Конакова, которая применима для гидравлически гладких труб

    Рис. 4.7. График Никурадзе

    Во второй области, расположенной между линий II и пунктирной линией справа, коэффициент λ зависит одновременно от двух параметров - числа Re и относительной шероховатости Δ/r0, которую можно заменить на Δэ. Для определения коэффициента λ в этой области может служить универсальная формула А.Д. Альтшуля:

    где Δэ - эквивалентная абсолютная шероховатость.

    Характерные значения Δэ (в мм) для труб из различных материалов приведены ниже:

    Стекло0
    Трубы, тянутые из латуни, свинца, меди0…0,002
    Высококачественные бесшовные стальные трубы0,06…0,2
    Стальные трубы0,1…0,5
    Чугунные асфальтированные трубы0,1…0,2
    Чугунные трубы0,2…1,0

    Третья область - область больших Re и Δ/r0, где коэффициент λ не зависит от числа Re, а определяется лишь относительной шероховатостью (область расположена справа от пунктирной линии). Это область шероховатых труб, в которой все линии с различными шероховатостями параллельны между собой. Эту область называют областью автомодельности или режимом квадратичного сопротивления, т.к. здесь гидравлические потери пропорциональны квадрату скорости.

    Определение λ для этой области производят по упрощенной формуле Альтшуля:

    или по формуле Прандтля - Никурадзе:

    Итак, потери напора, определяемые по формуле Вейсбаха-Дарси, можно определить, зная коэффициент гидравлического сопротивления, который определяется в зависимости от числа Рейнольдса Re и от эквивалентной абсолютной шероховатости Δэ. Для удобства сводные данные по определению λ представлены в таблице 4.1.

    Пользоваться приведенными в табл. 4.1 формулами для определения коэффициента λ не всегда удобно. Для облегчения расчетов можно воспользоваться номограммой Колбрука-Уайта (рис.4.8), при помощи которой по известным Re и Δэ/ d весьма просто определяется λ.

    Таблица 4.1

    Таблица для определения коэффициента гидравлического трения

    Рис. 4.8. Номограмма Колбрука-Уайта для определения коэффициента гидравлического трения

    4.5. Местные гидравлические сопротивления

    Все гидравлические потери энергии делятся на два типа: потери на трение по длине трубопроводов (рассмотрены в п.4.3 и 4.4) и местные потери, вызванные такими элементами трубопроводов, в которых вследствие изменения размеров или конфигурации русла происходит изменение скорости потока, отрыв потока от стенок русла и возникновение вихреобразования.

    Простейшие местные гидравлические сопротивления можно разделить на расширения, сужения и повороты русла, каждое из которых может быть внезапным или постепенным. Более сложные случаи местного сопротивления представляют собой соединения или комбинации перечисленных простейших сопротивлений.

    Рассмотрим простейшие местные сопротивления при турбулентном режиме течения в трубе.

    1. Внезапное расширение русла. Потеря напора (энергии) при внезапном расширении русла расходуется на вихреобразование, связанное с отрывом потока от стенок, т.е. на поддержание вращательного непрерывного движения жидких масс с постоянным их обновлением.

    Рис. 4.9. Внезапное расширение трубы

    При внезапном расширении русла (трубы) (рис.4.9) поток срывается с угла и расширяется не внезапно, как русло, а постепенно, причем в кольцевом пространстве между потоком и стенкой трубы образуются вихри, которые и являются причиной потерь энергии. Рассмотрим два сечения потока: 1-1 - в плоскости расширения трубы и 2-2 - в том месте, где поток, расширившись, заполнил все сечение широкой трубы. Так как поток между рассматриваемыми сечениями расширяется, то скорость его уменьшается, а давление возрастает. Поэтому второй пьезометр показывает высоту на ΔH большую, чем первый; но если бы потерь напора в данном месте не было, то второй пьезометр показал бы высоту большую еще на hрасш. Эта высота и есть местная потеря напора на расширение, которая определяется по формуле:

    где S1, S2 - площадь поперечных сечений 1-1 и 2-2.

    Это выражение является следствием теоремы Борда, которая гласит, что потеря напора при внезапном расширении русла равна скоростному напору, определенному по разности скоростей

    Выражение ( 1 - S1/S2 )2 обозначается греческой буквой ζ (дзета) и называется коэффициентом потерь, таким образом

    2. Постепенное расширение русла. Постепенно расширяющаяся труба называется диффузором (рис.4.10). Течение скорости в диффузоре сопровождается ее уменьшением и увеличением давления, а следовательно, преобразованием кинетической энергии жидкости в энергию давления. В диффузоре, так же как и при внезапном расширении русла, происходит отрыв основного потока от стенки и вихреобразования. Интенсивность этих явлений возрастает с увеличением угла расширения диффузора α.

    Рис. 4.10. Постепенное расширение трубы

    Кроме того, в диффузоре имеются и обычные потери на терние, подобные тем, которые возникают в трубах постоянного сечения. Полную потерю напора в диффузоре рассматривают как сумму двух слагаемых:

    где hтр и hрасш - потери напора на трение и расширение (вихреобразование).

    где n = S2/S1 = ( r2/r1 ) 2 - степень расширения диффузора. Потеря напора на расширение hрасш имеет ту же самую природу, что и при внезапном расширении русла

    где k - коэффициент смягчения, при α= 5…20°, k = sinα.

    Учитывая это полную потерю напора можно переписать в виде:

    откуда коэффициент сопротивления диффузора можно выразить формулой

    Рис. 4.11. Зависимость ζдиф от угла

    Функция ζ = f(α)имеет минимум при некотором наивыгоднейшем оптимальном значении угла α, оптимальное значение которого определится следующим выражением:

    При подстановке в эту формулу λТ =0,015…0,025 и n = 2…4 получим αопт = 6 (рис.4.11).

    3. Внезапное сужение русла. В этом случае потеря напора обусловлена трением потока при входе в более узкую трубу и потерями на вихреобразование, которые образуются в кольцевом пространстве вокруг суженой части потока (рис.4.12).

    Рис. 4.12. Внезапное сужение трубы4.13. Конфузор

    Полная потеря напора определится по формуле ;

    где коэффициент сопротивления сужения определяется по полуэмпирической формуле И.Е. Идельчика:

    в которой n = S1/S2 - степень сужения.

    При выходе трубы из резервуара больших размеров, когда можно считать, что S2/S1 = 0, а также при отсутствии закругления входного угла, коэффициент сопротивления   ζсуж = 0,5.

    4. Постепенное сужение русла. Данное местное сопротивление представляет собой коническую сходящуюся трубу, которая называется конфузором (рис.4.13). Течение жидкости в конфузоре сопровождается увеличением скорости и падением давления. В конфузоре имеются лишь потери на трение

    где коэффициент сопротивления конфузора определяется по формуле

    в которой n = S1/S2 - степень сужения.

    Небольшое вихреобразование и отрыв потока от стенки с одновременным сжатием потока возникает лишь на выходе из конфузора в месте соединения конической трубы с цилиндрической. Закруглением входного угла можно значительно уменьшить потерю напора при входе в трубу. Конфузор с плавно сопряженными цилиндрическими и коническими частями называется соплом (рис.4.14).

    Рис. 4.14. Сопло

    5. Внезапный поворот трубы (колено). Данный вид местного сопротивления (рис.4.15) вызывает значительные потери энергии, т.к. в нем происходят отрыв потока и вихреобразования, причем потери тем больше, чем больше угол δ. Потерю напора рассчитывают по формуле

    где ζкол - коэффициент сопротивления колена круглого сечения, который определяется по графику в зависимости от угла колена δ (рис.4.16).

    Рис. 4.15.Рис. 4.16. Зависимости ζкол от угла δРис. 4.17. Отвод

    6. Постепенный поворот трубы (закругленное колено или отвод). Плавность поворота значительно уменьшает интенсивность вихреобразования, а следовательно, и сопротивление отвода по сравнению с коленом. Это уменьшение тем больше, чем больше относительный радиус кривизны отвода R / d рис.4.17). Коэффициент сопротивления отвода ζотв зависит от отношения R / d, угла δ, а также формы поперечного сечения трубы.

    Для отводов круглого сечения с углом δ= 90 и R/d 1 при турбулентном течении можно воспользоваться эмпирической формулой:

    Для углов δ 70° коэффициент сопротивления

    а при δ 100°

    Потеря напора в колене определится как

    Все выше изложенное относится к турбулентному движению жидкости. При ламинарном движении местные сопротивления играют малую роль при определении общего сопротивления трубопровода. Кроме этого закон сопротивления при ламинарном режиме является более сложным и исследован в меньшей степени.

    Проверить себя ( Тест )

    Наверх страницы

    gidravl.narod.ru

    Основы гидравлики

    

    При движении жидкости в трубе между нею и стенками трубы возникают дополнительные силы сопротивлении, в результате чего частицы жидкости, прилегающие к поверхности трубы, тормозятся. Это торможение благодаря вязкости жидкости передается следующим слоям, отстоящим далее от поверхности трубы, причем скорость движения частиц по мере удаления их от оси трубы постепенно уменьшается. Равнодействующая сил сопротивления Т направлена в сторону, противоположную движению жидкости, и параллельна направлению движения. Это и есть силы гидравлического трения (сопротивления гидравлического трения).

    Для преодоления сопротивления трения и поддержания равномерного поступательного движения жидкости необходимо, чтобы на жидкость действовала сила, направленная в сторону ее движения и равная силе сопротивления, т. е. необходимо затрачивать энергию. Энергию или напор, необходимый для преодоления сил сопротивления, называют потерянной энергией или потерянным напором. Потери напора, затрачиваемые на преодоление сопротивления трения, носят название потерь напора на трение или потерь напора по длине потока (линейные потери напора) и обозначаются обычно hтр.

    Однако трение является не единственной возможной причиной, вызывающей потери напора. Резкое изменение сечения также оказывает сопротивление движению жидкости (так называемое сопротивление формы) и вызывает потери энергии. Существуют и другие причины, вызывающие потери напора, например внезапное изменение направления движения жидкости. Потери напора, вызываемые резким изменением конфигурации границ потока (затрачиваемые на преодоление сопротивления формы), называют местными потерями напора или потерями напора на местные сопротивления и обозначаются через hм.

    Таким образом, потери напора при движении жидкости складываются из потерь напора на трение и потерь на местные сопротивления, т. е.:

    hS = hтр + hм.

    ***

    Потери напора при равномерном движении жидкости в трубах

    Найдем общее выражение для потерь напора на трение при равномерном движении жидкости в трубах, справедливое как для ламинарного, так и для турбулентного режимов.

    При равномерном движении величина средней скорости и распределение скоростей по сечению остаются неизменными по всей длине трубопровода. Поэтому равномерное движение возможно лишь в трубах постоянного сечения S, так как в противном случае будет изменяться средняя скорость в соответствии с уравнением:

    v = Q/S = const.

    Равномерное движение имеет место в прямых трубах или в трубах с очень большим радиусом кривизны R (прямолинейное движение), так как в противном случае средняя скорость может изменяться по направлению. Кроме того, условие неизменности характера скоростей жидкости по живому сечению можно записать в виде α = const, где α – коэффициент Кориолиса. Последнее условие может быть соблюдено лишь при достаточном удалении рассматриваемого участка потока от входа в трубу.

    Если выделить на участке трубы с равномерно текущей жидкостью два произвольных сечения 1 и 2, то потери напора при перемещении жидкости между этими сечениями можно описать при помощи уравнения Бернулли:

    z1 + p1/γ = z2 + p2/γ +hтр,

    где: z1 и z2 – перепад высот между центрами соответствующих сечений; p1 и p2 – давление жидкости в соответствующих сечениях; γ – удельная плотность жидкости, γ = gρ; hтр – величина потерянной энергии (потери на трение).

    Из этой формулы выразим величину потерянной энергии hтр:

    hтр = (z1 + p1/γ) - (z2 + p2/γ).

    Это выражение называют уравнением равномерного движения жидкости в трубопроводе. Если труба расположена горизонтально, т. е. перепад высот между ее сечениями отсутствует, то уравнение примет упрощенный вид:

    hтр = p1/γ - p2/γ = (p1 – p2)/γ.

    ***

    

    При равномерном движении жидкости в трубах потери напора на трение по длине hл определяют по формуле Дарси-Вейсбаха, которая справедлива для круглых труб, как при турбулентном, так и при ламинарном режиме. Эта формула устанавливает зависимость между потерями напора hл, диаметром трубы d и средней скоростью потока жидкости v:

    hл = λv2/2gd,

    где: λ – коэффициент гидравлического трения (величина безразмерная); g – ускорение свободного падения.

    Для труб произвольного сечения в формуле Дарси-Вейсбаха используют понятие приведенного или эквивалентного диаметра сечения трубы по отношению к круглому сечению.

    В некоторых случаях используют также формулу

    hл = v2l/C2R,

    где: v – средняя скорость потока в трубе или канале; l – длина участка трубы или канала; R – гидравлический радиус потока жидкости; С – коэффициент Шези, связанный с коэффициентом гидравлического трения λ зависимостью: С = √(8g/λ) или λ = 8g/С2. Размерность коэффициента Шези – м1/2/с.

    Для определения коэффициента гидравлического трения при различных режимах и условиях движения жидкости применяют различные способы и эмпирические зависимости, в частности, график И. И. Никурадзе, формулы П. Блазиуса, Ф. А. Шевелева (для гладких труб) и Б. Л. Шифринсона (для шероховатых труб). Все эти способы и зависимости опираются на критерий Рейнольдса Re и учитывают состояние поверхности труб.

    ***

    Потери напора из-за местных сопротивлений

    Как уже указывалось выше, местные потери напора обусловлены преодолением местных сопротивлений, создаваемых фасонными частями, арматурой и прочим оборудованием трубопроводных сетей, а также изменением направления потока жидкости (изгибы труб, колена и т. п.). Местные сопротивления вызывают изменение величины или направления скорости движения жидкости на отдельных участках трубопровода, что связано с появлением дополнительных потерь напора.

    Движение в трубопроводе при наличии местных сопротивлений является неравномерным.

    Потери напора в местных сопротивлениях hм (местные потери напора) вычисляют по формуле Вейсбаха:

    hм = ξv2/2g,

    где: v – средняя скорость в сечении, расположенном ниже по течению за местным сопротивлением; ξ – безразмерный коэффициент местного сопротивления, определяемый для каждого вида местного сопротивления по справочным таблицам или установленным зависимостям.

    Потери напора при внезапном расширении трубопровода находят по формуле Борда:

    hвн.р. = (v1 – v2)2\2g = ξвн.р.1v12/2g = ξвн.р.2v22/2g,

    где v1 и v2 – средние скорости течения до и после расширения.

    При внезапном сужении трубопровода коэффициент местного сопротивления определяется по формуле:

    hвн.с. = (1/ε - 1)2,

    где ε - коэффициент сжатия струи, определяемый, как отношение площади сечения сжатой струи в узком трубопроводе к площади сечения узкой трубы. Этот коэффициент зависит от степени сжатия потока n = S2/S1 и может быть найден по формуле А. Д. Альтшуля:    ε = 0,57 + 0,043/(1,1 - n). Значение коэффициента ε при расчетах трубопроводов берут из справочных таблиц.

    При резком повороте трубы круглого поперечного сечения на угол α коэффициент сопротивления можно найти по формуле:

    ξα = ξ90˚(1 – cos α),

    где: ξ90˚ - значение коэффициента сопротивления для угла 90˚, которое для точных расчетов принимается по справочным таблицам, а для приближенных расчетов принимается равным ξ90˚ = 1.

    Аналогичными методами осуществляют подбор или расчет коэффициентов сопротивления для других видов местных сопротивлений – резкое или постепенное сужение (расширение) трубопровода, повороты, входы и выходы из трубы, диафрагмы, запорные устройства, сварочные швы и т. п.

    Приведенные выше формулы применимы для турбулентного режима движения жидкостей с большими числами Рейнольдса, когда влияние вязкости жидкости незначительно. При движении жидкости с малыми числами Рейнольдса (ламинарный режим) величина местных сопротивлений мало зависит от геометрических характеристик сопротивления и скорости потока, на их величину большее влияние оказывает величина числа Рейнольдса. В таких случаях для расчета коэффициентов местных сопротивлений применима формула А. Д. Альтшуля:

    ξ = А/Re + ξэкв,

    где: А – нестесненное сечение трубопровода; ξэкв – значения коэффициента местного сопротивления в квадратичной области; Re - число Рейнольдса.

    Значения параметра А и некоторых местных сопротивлений приводятся в справочных таблицах и используются при практических расчетах трубопроводов, предназначенных для движения жидкостей в ламинарном режиме.

    ***

    Трубопроводы и их гидравлический расчет

    
    Главная страница
    Специальности
    Учебные дисциплины
    Олимпиады и тесты

    k-a-t.ru


    Смотрите также