(495) 766-86-01603-971-803
Мы работаем по выходным - тел. 8-926-197-21-13
 

Заполнить систему отопления как


Заполнение системы отопления. Правильная последовательность

Любая водяная система отопления не обходится без теплоносителя внутри. Поэтому в этой статье поговорим о том, как следует заполнять систему отопления. Процедура это простая, но как и во всем, в ней есть свои сложности и особенности. Именно об этих особенностях и пойдет речь.

Представим обычную систему отопления в составе радиаторной сети, системы теплых полов. Работает все котла. Есть бойлер косвенного нагрева и чаще всего применяемая система первично-вторичных колец. Металлическая часть смонтирована, можно приступать к заполнению.

Первый шаг наполнения системы

Если уже есть действующая система водоснабжения, то заполнение системы отопления идет предельно просто. Берем подходящий шланг, включаем его к крану залива и опорожнения системы (его ставят в котельной). Одного крана для этих целей хватает. Через него можно и слить систему, и заполнить. И второй конец шланга подключаем к разборному крану действующей системы водоснабжения. Открываем оба крана и заполняем систему.

Если же система водоснабжения еще не действует или было принято решение, что отопление будет функционировать на незамерзающем теплоносителе, обязательно потребуется насос. Насос может быть любой, подходящий по параметрам.

На что стоит обратить внимание при заполнения системы отопления насосом? Подающий патрубок насоса должен быть расположен с противоположной стороны от забора. С таким насосом работать удобней, чем с насосом, у которого подача и забор находятся на одной стороне. Заполнять систему можно будет даже из емкости незамерзающего теплоносителя.

Может возникнуть ситуация, что подходящего насоса не окажется, а покупать его не хочется. Из этого положения тоже есть выход. В этом случае прямой путь на чердак или на крышу со шлангом и воронкой. Это не шутка. Действительно бывают случаи, когда нет электричества или нет насоса, а систему заполнять надо. Нужно взять шланг длиной около 10-15 метров, залезть как можно выше (в идеале на конек дома) и оттуда через воронку заполнять систему. Если разница между низом системы и заливной воронкой будет порядка 7-8 метров, то давление внизу, в месте установки насоса, будет 0,7-0,8 бара. Этого давления вполне достаточно для функционирования системы.

Итак, к шлангу мы подключили, включаем насос и начинаем.

Промывка системы 

Заполняем систему отопления водой до давления в 2 бара, после этого включаем циркуляционный насос. Если есть система первично-вторичных колец или котел подключен к системе непосредственно, то сразу можно запускать котел и без нагрева или при минимальном нагреве даем возможность поработать системе приблизительно час.

После этого проверяем состояние фильтра-грязевика. Если он чистый, на этом промывка считается законченной. Если в нем есть грязь, то нужно очистить сеточку, запустить систему снова, дать поработать полчаса и снова смотреть состояние фильтра. Промывка считается законченной, через полчаса на сетке фильтра не будет грязи.

Промывочную воду нужно слить из системы отопления, остатки удалить компрессором. После этого можно начинать заполнение системы рабочим теплоносителем.

Что заливать в систему отопления?

Заполнение системы отопления антифризом

Если заполнение системы отопления ведется водой, то нет нужды искать дистилированную или какую-то специально подготовленную воду для систем отопления. Если искать, то результаты обязательно будут, потому что желающих продать воздух очень много. Для заполнения системы нужно брать обычную водопроводную воду. Вреда это никакого системе не принесет. Не стоит попадаться на рекламные удочки и покупать специальные присадки ни в системы отопления, ни в стиральные машины. Не надо тратить деньги на то, без чего можно обойтись.

Если принято решение залить в систему отопления незамерзайку, то стоит сразу выбросить из головы желание залить туда автомобильный тосол и любые другие специфические незамерзающие жидкости.

На рынке есть три основных незамерзающих теплоносителя, которые специально подготовлены для систем отопления. На основе глицерина, на основе пропиленгликоля и этиленгликоль.

Глицерин не стоит даже рассматривать. Это повлечет за собой большую волокиту с настройкой системы, с плохой теплоотдачей. А закончится все тем, что придется промывать систему и заливать другой теплоноситель.

Выбор теплоносителя для заполнения системы отопления стоит между этиленом и пропиленом. Лучше все же выбрать первый вариант, так как его теплоемкость выше, меньше расход. Он меньше кипит на котлах электрических и на котлах настеных газовых, там где очень интенсивыный теплообмен на горелке небольшой площади. Не пенясь и меньше выгорая, этиленгликоль работает лучше, обладает высокой телоотдачей и в два раза дешевле, чем пропиленгликоль.

Помните главное, такой теплоноситель рано или поздно потребуется утилизировать. Выливать такое в землю, значит нанести ей вред. Поэтому предусмотрите варианты дальнейшей утилизации

Заполнение радиаторов отопления

Начинаем с системы радиаторного отопления. Включаем насос, доводим давление до двух атмосфер и идем спускать воздух из радиаторов. Воздух стоит начать гонять с нижнего уровня, так как весь воздух с нижнего этажа оказывается наверху, а вот обратно вниз уже не идет.

Воздух выгоняется очень просто, через краны маевского. Можно взять обычную шлицевую отвертку и открыть кран маевского за шлиц. Таким образом спускается воздух из крана. Воздух выпускается из всех радиаторов, из конвекторов воздух выгонять, как правило, нужды нет. Он оттуда улетает сам, потому что задержаться ему там нет никакой возможности.

После того, как воздух спущен, давление в системе падает, и нужно снова поднять его до двух атмосфер. После чего опять вернуться и стравить воздух. Потом уже можно включать котел. Обычно дается 60 градусов. И проходим по всем радиаторам, проверяя наличие неработающих.

Если с одного конца радиатор теплый, а с другого холодный, значит, в нем есть воздух. Удаляем его все тем же методом. Если радиатор полностью холодный, эта проблема тоже легко устраняется. Закрываются все радиаторы, которые работают, и насосу ничего не остается, кроме как гнать теплоноситель по трубам до последнего радиатора.

После этого необходимо довести давление в котле до нормы и на слух определить работу насоса. Если слышно периодическое проскакивание воздуха через крыльчатку, а при открытии обнаруживается выход пены, то необходимо от нее избавиться.

Выключаем насосы и даем возможность пене отстояться минут 15-20. Особенно важно это сделать на системах с незамерзайками. Пена превращается в пузырь воздуха. После чего снова запускаем систему и на радиаторах вылавливаем этот воздух. На этом заполнение системы отопления закончено

Заполнение теплых полов

Теплые полы имеет свои особенности. Они заполняются не все сразу, а по одному контуру. Если заполнять все сразу (а они имеют разную длину), то в длинных контурах обязательно останется воздух, который удалить оттуда практически невозможно. Поэтому поступаем следующим образом.

Коллектор полностью собирается. Перекрываются на обратке все контура, кроме одного. Включается насос, и через подачу этот контур заполняется система отопления до тех пор, пока из дренажного отверстия не польется чистый теплоноситель без признака воздуха. После того, как это случилось, контур закрывается. Таким же образом заполняются все остальные.

Здесь желательно иметь еще один шланг для того, чтобы направить его в ведро с теплоносителем во избежание его разлива.

После этого закрывается дренажное отверстие, открываются все контура и проверяется работа теплого пола. Важно обратить внимание на то, что систему радиаторной сети можно заливать теплоносителем против его движения. С теплыми полами так делать нельзя, заливать нужно только со стороны прямой, потому что в ином случае теплоноситель не будет двигаться через ротаметры.

Наполнение бойлера косвенного нагрева

Когда он расположен высоко, трубы загрузки могут стать непреодолимым препятствием для воздуха, и он будет застаиваться в верхней части. Удалить его можно, установив воздушный кран. Автоматический воздухоотводчик здесь не нужен, так как воздух удаляется только один раз.

Видео по заполнению системы отопления

Итог

Система отопления заполнена, воздух удален, на этом можно считать работу законченной. Через некоторое время возможно понадобится удалить воздух из одного или нескольких радиаторов, потому что в системе он еще есть. Частично он будет удаляться через автоматический воздухоотводчик.

Читайте так же:

Основы системы отопления и охлаждения: советы и рекомендации

Как только воздух нагревается или охлаждается у источника тепла / холода, его необходимо распределить по различным комнатам вашего дома. Это может быть выполнено с помощью систем с принудительной подачей воздуха, гравитации или излучения, описанных ниже.

Системы нагнетания воздуха

Система принудительной подачи воздуха распределяет тепло, производимое печью, или холод, производимый центральным кондиционером, через вентилятор с электрическим приводом, называемый нагнетателем, который нагнетает воздух через систему металлических каналов в комнаты в вашем доме.По мере того, как теплый воздух из печи втекает в комнаты, более холодный воздух из комнат течет вниз по другому набору каналов, называемому системой возврата холодного воздуха, в печь для обогрева. Эта система регулируется: вы можете увеличивать или уменьшать количество воздуха, проходящего через ваш дом. В центральных системах кондиционирования воздуха используется та же система принудительной подачи воздуха, включая вентилятор, для распределения холодного воздуха по комнатам и для возврата более теплого воздуха для охлаждения.

Объявление

Проблемы с системами принудительной подачи воздуха обычно связаны с неисправностью вентилятора.Воздуходувка также может быть шумной и добавляет стоимость электроэнергии к стоимости топочного топлива. Но поскольку в ней используется воздуходувка, система принудительной подачи воздуха представляет собой эффективный способ направлять переносимое по воздуху тепло или холодный воздух по всему дому.

Гравитационные системы

Гравитационные системы основаны на принципе подъема горячего воздуха и опускания холодного воздуха. Следовательно, гравитационные системы нельзя использовать для распределения холодного воздуха из кондиционера. В гравитационной системе печь располагается рядом с полом или под ним.Нагретый воздух поднимается по воздуховодам и попадает в пол по всему дому. Если печь расположена на первом этаже дома, тепловые регистры обычно располагаются высоко на стенах, потому что регистры всегда должны быть выше печи. Нагретый воздух поднимается к потолку. По мере того, как воздух охлаждается, он опускается, входит в каналы возвратного воздуха и возвращается в печь для повторного нагрева.

Другой основной системой распределения для отопления является лучистая система.Источником тепла обычно является горячая вода, которая нагревается печью и циркулирует по трубам, встроенным в стену, пол или потолок.

Радиант Системс

Излучающие системы работают, обогревая стены, пол или потолок комнат или, что чаще всего, обогревая радиаторы в комнатах. Затем эти предметы нагревают воздух в комнате. В некоторых системах используются электрические нагревательные панели для выработки тепла, которое излучается в комнаты. Как и настенные гравитационные обогреватели, эти панели обычно устанавливают в теплом климате или там, где электричество относительно недорогое.Системы излучающего излучения нельзя использовать для распределения холодного воздуха от кондиционера.

Радиаторы и конвекторы, наиболее распространенные средства распределения лучистого тепла в старых домах, используются с системами водяного отопления. Эти системы могут зависеть от силы тяжести или от циркуляционного насоса для циркуляции нагретой воды от котла к радиаторам или конвекторам. Система, в которой используется насос или циркуляционный насос, называется гидравлической системой.

Современные системы лучистого отопления часто встраиваются в дома, построенные на фундаменте из бетонных плит.Под поверхностью бетонной плиты прокладывается сеть водопроводных труб. Когда бетон нагревается трубами, он нагревает воздух, соприкасающийся с поверхностью пола. Плита не должна сильно нагреваться; в конечном итоге он будет контактировать с воздухом по всему дому и нагревать его.

Системы Radiant, особенно когда они зависят от силы тяжести, подвержены ряду проблем. Трубы, используемые для распределения нагретой воды, могут забиться минеральными отложениями или наклониться под неправильным углом.Также может выйти из строя бойлер, в котором вода нагревается у источника тепла. В новых домах системы горячего водоснабжения устанавливаются редко.

В следующем разделе вы узнаете, как термостат и другие элементы управления используются для поддержания климата в помещении, создаваемого вашими системами отопления и охлаждения.

.

Отопление | процесс или система

Отопление , процесс и система повышения температуры замкнутого пространства с основной целью обеспечения комфорта жильцов. Регулируя температуру окружающей среды, отопление также служит для поддержания структурных, механических и электрических систем здания.

В термоэлектрической генерирующей системе источник тепла - обычно работающий на угле, нефти или газе - используется внутри котла для преобразования воды в пар высокого давления.Пар расширяется и вращает лопатки турбины, которая вращает якорь генератора, вырабатывая электроэнергию. Конденсатор преобразует оставшийся пар в воду, а насос возвращает воду в бойлер. Encyclopædia Britannica, Inc.

Историческое развитие

Самым ранним способом обогрева помещений был открытый огонь. Такой источник, наряду с соответствующими методами, такими как камины, чугунные печи и современные обогреватели, работающие на газе или электричестве, известен как прямое отопление, потому что преобразование энергии в тепло происходит на обогреваемом участке.Более распространенная форма отопления в наше время известна как центральное, или косвенное, отопление. Он заключается в преобразовании энергии в тепло в источнике вне, отдельно от обогреваемого объекта или объектов или расположенных внутри них; Получающееся тепло передается на объект через текучую среду, такую ​​как воздух, вода или пар.

За исключением древних греков и римлян, большинство культур полагалось на методы прямого нагрева. Древесина была первым топливом, которое использовалось, хотя в местах, где требовалось только умеренное тепло, таких как Китай, Япония и Средиземноморье, использовался древесный уголь (сделанный из дерева), потому что он производил гораздо меньше дыма.Дымоход, или дымоход, который сначала был простым отверстием в центре крыши, а затем поднимался прямо из камина, появился в Европе в 13 веке и эффективно устранял дым и испарения огня из жилого помещения. Закрытые печи, по-видимому, впервые использовались китайцами около 600 г. до н.э. и в конечном итоге распространились по России в северную Европу, а оттуда в Америку, где Бенджамин Франклин в 1744 году изобрел улучшенную конструкцию, известную как печь Франклина. Печи расходуют гораздо меньше тепла, чем камины, потому что тепло огня поглощается стенками печи, которые нагревают воздух в комнате, а не пропускают вверх по дымоходу в виде горячих дымовых газов.

Центральное отопление, кажется, было изобретено в Древней Греции, но именно римляне стали лучшими инженерами-теплотехниками древнего мира с их системой гипокауста. Во многих римских зданиях полы из мозаичной плитки поддерживались колоннами внизу, которые создавали воздушные пространства или каналы. На участке, расположенном в центре всех отапливаемых комнат, сжигали древесный уголь, хворост и, в Великобритании, уголь, и горячие газы распространялись под полом, нагревая их в процессе. Однако система гипокауста исчезла с упадком Римской империи, и центральное отопление не было восстановлено до 1500 лет спустя.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Центральное отопление снова стало использоваться в начале 19 века, когда промышленная революция вызвала увеличение размеров зданий для промышленности, жилых помещений и сферы услуг. Использование пара в качестве источника энергии предложило новый способ обогрева фабрик и заводов, когда пар передавался по трубам. Котлы, работающие на угле, подавали горячий пар в помещения с помощью стоячих радиаторов.Паровое отопление долгое время преобладало на североамериканском континенте из-за очень холодных зим. Преимущества горячей воды, которая имеет более низкую температуру поверхности и более мягкий общий эффект, чем пар, начали осознаваться примерно в 1830 году. В системах центрального отопления двадцатого века обычно используется теплый воздух или горячая вода для передачи тепла. В большинстве недавно построенных американских домов и офисов теплый воздух вытеснил пар, но в Великобритании и на большей части европейского континента горячая вода заменила пар в качестве предпочтительного метода отопления; канальный теплый воздух там никогда не был популярен.Большинство других стран приняли американские или европейские предпочтения в методах отопления.

Системы центрального отопления и топливо

Важнейшими компонентами системы центрального отопления являются устройства, в которых можно сжигать топливо для получения тепла; среда, транспортируемая в трубах или каналах для передачи тепла в обогреваемые помещения; и излучающее устройство в этих пространствах для выпуска тепла либо конвекцией, либо излучением, либо обоими способами. Принудительное распределение воздуха перемещает нагретый воздух в пространство с помощью системы воздуховодов и вентиляторов, которые создают перепады давления.Лучистое отопление, напротив, включает прямую передачу тепла от излучателя к стенам, потолку или полу замкнутого пространства независимо от температуры воздуха между ними; Излучаемое тепло устанавливает цикл конвекции во всем пространстве, создавая в нем равномерно нагретую температуру.

Температура воздуха и влияние солнечного излучения, относительной влажности и конвекции - все это влияет на конструкцию системы отопления. Не менее важным соображением является объем физической активности, который ожидается в определенных условиях.В рабочей атмосфере, в которой напряженная деятельность является нормой, человеческое тело выделяет больше тепла. В качестве компенсации температура воздуха поддерживается на более низком уровне, что позволяет рассеивать лишнее тепло тела. Верхний предел температуры 24 ° C (75 ° F) подходит для сидячих рабочих и домашних жилых помещений, а нижний предел температуры 13 ° C (55 ° F) подходит для лиц, выполняющих тяжелую ручную работу.

При сгорании топлива углерод и водород вступают в реакцию с атмосферным кислородом с выделением тепла, которое передается из камеры сгорания среде, состоящей из воздуха или воды.Оборудование устроено так, что нагретая среда постоянно удаляется и заменяется охлаждающей системой - , т. Е. путем циркуляции. Если среда является воздухом, оборудование называется топкой, а если среда - водой, бойлером или водонагревателем. Термин «бойлер» более правильно относится к сосуду, в котором производится пар, а «водонагреватель» - к сосуду, в котором вода нагревается и циркулирует ниже ее точки кипения.

Природный газ и мазут являются основными видами топлива, используемыми для производства тепла в котлах и печах.Они не требуют труда, за исключением периодической очистки, и работают с ними с помощью полностью автоматических горелок, которые могут регулироваться термостатом. В отличие от своих предшественников, угля и кокса, после использования не остается остаточной золы для утилизации. Природный газ вообще не требует хранения, а нефть перекачивается в резервуары для хранения, которые могут быть расположены на некотором расстоянии от отопительного оборудования. Рост объемов отопления на природном газе был тесно связан с увеличением доступности газа из сетей подземных трубопроводов, надежностью подземных поставок и чистотой сжигания газа.Этот рост также связан с популярностью систем воздушного отопления, к которым особенно хорошо подходит газовое топливо и на долю которых приходится большая часть природного газа, потребляемого в жилых домах. Газ легче сжигать и контролировать, чем нефть, пользователю не нужен резервуар для хранения и он платит за топливо после того, как он его использовал, а доставка топлива не зависит от капризов моторизованного транспорта. Газовые горелки обычно проще, чем те, которые требуются для жидкого топлива, и имеют мало движущихся частей. Поскольку при сжигании газа выделяются ядовитые выхлопные газы, воздух из обогревателей должен выводиться наружу.В местах, недоступных для трубопроводов природного газа, сжиженный нефтяной газ (пропан или бутан) доставляется в специальных автоцистернах и хранится под давлением в доме до тех пор, пока он не будет готов к использованию так же, как природный газ. Нефтяное и газовое топливо во многом обязано своим удобством автоматической работе их теплоцентралей. Эта автоматизация основана в первую очередь на термостате, устройстве, которое, когда температура в помещении упадет до заданной точки, активирует печь или котел до тех пор, пока потребность в тепле не будет удовлетворена.Автоматические отопительные установки настолько тщательно защищены термостатами, что предвидятся и контролируются почти все мыслимые обстоятельства, которые могут быть опасными.

.

Система водяного отопления - Процедура проектирования

При проектировании системы водяного отопления может использоваться процедура, указанная ниже:

  1. Рассчитайте теплопотери в помещениях
  2. Рассчитайте мощность котла
  3. Выберите нагревательные элементы
  4. Выберите тип, размер и режим работы циркуляционного насоса
  5. Составить схему трубопровода и рассчитать размеры труб
  6. Расчет расширительного бака
  7. Расчет предохранительных клапанов

1.Расчет потерь тепла

Рассчитайте потери тепла при передаче через стены, окна, двери, потолки, полы и т. Д. Кроме того, необходимо рассчитать потери тепла, вызванные вентиляцией и проникновением наружного воздуха.

2. Мощность котла

Мощность котла может быть выражена как

B = H (1 + x) (1)

, где

B = мощность котла (кВт)

H = общие тепловые потери (кВт)

x = запас на нагрев - обычно используются значения в диапазоне 0.От 1 до 0,2

Подходящий котел необходимо выбрать из производственной документации.

3. Выбор комнатных обогревателей

Номинальные характеристики радиаторов и комнатных обогревателей можно рассчитать как

R = H (1 + x) (2)

, где

R = рейтинг обогреватели в помещении (Вт)

H = потери тепла из помещения (Вт)

x = запас для обогрева помещения - общие значения в диапазоне 0.От 1 до 0,2

Нагреватели с правильными характеристиками должны выбираться из производственной документации.

4. Калибровка насосов

Производительность циркуляционных насосов может быть рассчитана как

Q = H / (h 1 - h 2 ) ρ (3)

где

Q = объем воды (м 3 / с)

H = общие тепловые потери (кВт)

ч 1 = энтальпия потока воды (кДж / кг) (4 .204 кДж / кг. o C при 5 o C, 4,219 кДж / кг. o C при 100 o C )

h 2 = энтальпия возвратной воды (кДж / кг)

ρ = плотность воды в насосе (кг / м 3 ) (1000 кг / м 3 при 5 ° ° C, 958 кг / м 3 при 100 ° ° C)

Для циркуляционных систем низкого давления - LPHW ( 3) можно приблизить к

Q = H / 4.185 (t 1 -t 2 ) (3b)

где

t 1 = температура подачи ( o C)

t 2 = температура обратной линии ( o C)

Для циркуляционных систем с низким давлением - LPHW напор от 10 до 60 кН / м 2 и сопротивление трению основной трубы от 80 до 250 Н / м 2 на метр труба обычная.

Для насосных циркуляционных систем высокого давления - HPHW напор от 60 до 250 кН / м 2 и сопротивление трению основной трубы от 100 до 300 Н / м 2 на м трубы является обычным явлением.


Циркуляционная сила в гравитационной системе может быть рассчитана как

p = hg (ρ 1 - ρ 2 ) (4)

, где

p = давление циркуляции в наличии (Н / м 2 )

h = высота между центром котла и центром радиатора (м)

g = ускорение свободного падения = 9.81 (м / с 2 )

ρ 1 = плотность воды при температуре подачи (кг / м 3 )

ρ 2 = плотность воды при температуре возврата (кг / м 3 )

5. Определение размеров труб

Полная потеря давления в системе трубопроводов горячей воды может быть выражена как

p t = p 1 + p 2 (5)

где

p t = общая потеря давления в системе (Н / м 2 )

p 1 = основная потеря давления из-за трения (Н / м 2 )

p 2 = незначительная потеря давления из-за фитингов (Н / м 2 )

м В качестве альтернативы основная потеря давления из-за трения может быть выражена как

p 1 = il (6)

, где

i = основное сопротивление трению трубы на длину трубы (Н / м 2 на метр трубы)

л = длина трубы (м)

Значения сопротивления трению для фактических труб и объемного расхода можно получить из специальных таблиц, составленных для труб или трубок.

Незначительные потери давления из-за фитингов, таких как колена, колена, клапаны и т.п., можно рассчитать как:

p 2 = ξ 1/2 ρ v 2 (7)

или как выражается как "напор"

h потери = ξ v 2 /2 g (7b)

где

ξ = коэффициент малых потерь

p убыток = потеря давления (Па (Н / м 2 ), фунт / дюйм (фунт / фут 2 ))

ρ = плотность (кг / м 3 , снарядов / фут 3 )

v = скорость потока (м / с, фут / с)

h потеря = потеря напора (м, фут)

g = ускорение свободного падения ( 9.81 м / с 2 , 32,17 фут / с 2 )

6. Расширительный бак

Когда жидкость нагревается, она расширяется. Расширение воды, нагретой от 7 o C до 100 o C , составляет приблизительно 4% . Чтобы избежать расширения, создающего давление в системе, превышающее расчетное давление, обычно расширяющуюся жидкость направляют в резервуар - открытый или закрытый.

Открытый расширительный бак

Открытый расширительный бак применим только для систем горячего водоснабжения низкого давления - LPHW -.Давление ограничено самым высоким расположением бака.

Объем открытого расширительного бачка должен быть вдвое больше предполагаемого объема расширения в системе. Приведенная ниже формула может использоваться для системы горячего водоснабжения с нагревом от 7 o C до 100 o C (4%):

V t = 2 0,04 V w (8 )

где

V т = объем расширительного бака (м 3 )

V w = объем воды в системе (м 3 )

Закрытый расширительный бак

В закрытом расширительном баке давление в системе частично поддерживается сжатым воздухом.Объем расширительного бака может быть выражен как:

V t = V e p w / (p w - p i ) (8b)

где

V т = объем расширительного бака (м 3 )

V e = объем, на который увеличивается объем воды (м 3 )

p w = абсолютное давление резервуара при рабочей температуре - рабочая система (кН / м 2 )

p i = абсолютное давление холодного резервуара при заполнении - нерабочая система ( кН / м 2 )

Расширяющийся объем может быть выражен как:

V e = V w i - ρ w ) / ρ w (8c)

где

V w = объем воды в системе (м 3 )

ρ i = плотность холодной воды при температуре наполнения (кг / м 3 )

ρ w = плотность воды при рабочей температуре (кг / м 3 )

Рабочее давление системы - p w - должно быть таким, чтобы рабочее давление в наивысшей точке системы соответствовало температуре кипения на 10 o C выше рабочей температуры.

p w = рабочее давление в наивысшей точке

+ разница статического давления между наивысшей точкой и резервуаром

+/- давление насоса (+/- в зависимости от положения насоса)

7. Выбор предохранительных клапанов

Предохранительные клапаны для систем с принудительной циркуляцией (насос)

Настройки предохранительного клапана = давление на выходной стороне насоса + 70 кН / м 2

Предохранительные клапаны для систем самотечной циркуляции

Настройки предохранительного клапана = давление в системе + 15 кН / м 2

Чтобы предотвратить утечку из-за ударов в системе, обычно настройка составляет не менее 240 кН / м 2 .

.

Principles of Heating and Cooling

Понимание того, как тепло передается с улицы в ваш дом и от вашего дома к вашему телу, важно для понимания проблемы поддержания прохлады в вашем доме. Понимание процессов, которые помогают сохранять ваше тело прохладным, важно для понимания стратегий охлаждения вашего дома.

Принципы теплопередачи

Тепло передается к объектам и от них - например, к вам и вашему дому - посредством трех процессов: теплопроводности, излучения и конвекции.

Проводимость - это тепло, проходящее через твердый материал. В жаркие дни тепло попадает в ваш дом через крышу, стены и окна. Теплоотражающие крыши, изоляция и энергоэффективные окна помогут снизить теплопроводность.

Излучение - это тепло, перемещающееся в виде видимого и невидимого света. Солнечный свет - очевидный источник тепла для дома. Кроме того, низковолновое невидимое инфракрасное излучение может переносить тепло непосредственно от теплых предметов к более холодным.Благодаря инфракрасному излучению вы можете почувствовать тепло горячего элемента конфорки на плите даже через всю комнату. Старые окна позволят инфракрасному излучению, исходящему от теплых предметов снаружи, проникать в ваш дом; оттенки могут помочь заблокировать это излучение. Новые окна имеют низкоэмиссионные покрытия, которые блокируют инфракрасное излучение. Инфракрасное излучение также будет переносить тепло от стен и потолка прямо к вашему телу.

Конвекция - еще одно средство для достижения тепла от ваших стен и потолка.Горячий воздух естественным образом поднимается вверх, унося тепло от стен и заставляя его циркулировать по всему дому. Когда горячий воздух проходит мимо вашей кожи (и вы вдыхаете его), он согревает вас.

Охлаждение вашего тела

Ваше тело может охладиться посредством трех процессов: конвекции, излучения и потоотделения. Вентиляция усиливает все эти процессы. Вы также можете охладить свое тело с помощью теплопроводности - например, некоторые автокресла теперь оснащены охлаждающими элементами, - но это обычно нецелесообразно для использования в вашем доме.

Конвекция возникает, когда тепло уносится от вашего тела через движущийся воздух. Если окружающий воздух холоднее вашей кожи, воздух поглотит ваше тепло и поднимется. По мере того, как нагретый воздух поднимается вокруг вас, более прохладный воздух движется, чтобы занять его место и поглотить больше вашего тепла. Чем быстрее движется конвекционный воздух, тем прохладнее вы чувствуете.

Излучение возникает, когда тепло распространяется через пространство между вами и предметами в вашем доме. Если предметы теплее, чем вы, тепло пойдет к вам.Удаление тепла через вентиляцию снижает температуру потолка, стен и мебели. Чем прохладнее ваше окружение, тем больше тепла вы излучаете на объекты, а не наоборот.

Perspiration может быть неудобным, и многие люди предпочли бы сохранять спокойствие без него. Однако во время жаркой погоды и физических упражнений пот - это мощный охлаждающий механизм тела. Когда влага покидает поры кожи, она переносит с собой много тепла, охлаждая ваше тело.Если ветерок (вентиляция) проходит по вашей коже, эта влага испарится быстрее, и вам будет еще прохладнее.

.

Смотрите также